[Effect of MiR-155 Knockout Mediated by Dual sgRNAs on Drug Sensitivity of FLT3-ITDAML].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

Department of Hematology, Fujian Medical University Union Hospital, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fuzhou 350001, Fujian Province, China,E-mail:

Published: April 2022

Objective: Two sgRNAs transfected FLT3-ITDAML cell line MV411 with different binding sites were introduced into CRISPR/cas9 to obtain MV411 cells with miR-155 gene knockout. To compare the efficiency of miR-155 gene knockout by single and double sgRNA transfection and their effects on cell phenotypes.

Methods: The lentiviral vectors were generated containing either single sgRNA or dual sgRNAs and packaged into lentivirus particles. PCR was conducted to measure gene editing efficiency, and miR-155 expression was evaluated by qPCR. CCK-8 assay was used to evaluate the cell proliferation, and calculate drug sensitivity of cells to adriamycin and quizartinib. Annexin V-APC/7-AAD staining was used to label cell apoptosis induced by adriamycin and quizartinib.

Results: In the dual sgRNAs transfected cells, a cleavage band could be observed, meaning the success of gene editing. Compared with the single sgRNA transfected MV411 cells, the expression level of mature miR-155-5p was lower in the dual sgRNA transfected cells. And, dual sgRNA transfected MV411 were more sensitive to adriamycin and quizartinib with lower IC and higher apoptosis rate.

Conclusion: The inhibition rate of miR-155 gene expression transfected by dual sgRNA is higher than that by single sgRNA. Dual sgRNA transfection can inhibit cell proliferation, reverse drug resistance, and induce apoptosis more significantly. Compared with single sgRNA transfection, dual sgRNA transfection is a highly efficient gene editing scheme.

Download full-text PDF

Source
http://dx.doi.org/10.19746/j.cnki.issn.1009-2137.2022.02.002DOI Listing

Publication Analysis

Top Keywords

dual sgrna
20
sgrna transfection
16
single sgrna
16
dual sgrnas
12
mir-155 gene
12
gene editing
12
sgrna transfected
12
sgrna
10
dual
8
drug sensitivity
8

Similar Publications

Gene editing without ex vivo culture evades genotoxicity in human hematopoietic stem cells.

Cell Stem Cell

December 2024

Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for β-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here, we compare combined CRISPR-Cas9 editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. Dual targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two single guide RNAs (sgRNAs) resulted in superior HbF induction, including in sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers.

View Article and Find Full Text PDF

Dual pH-responsive CRISPR/Cas9 ribonucleoprotein xenopeptide complexes for genome editing.

Eur J Pharm Sci

December 2024

Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig-Maximilians-Universität Munich, Butenandtstrasse 5-13, 81377 Munich, Germany; Center for Nanoscience (CeNS), LMU Munich, 80799 Munich, Germany; CNATM - Cluster for Nucleic Acid Therapeutics Munich, Germany. Electronic address:

Article Synopsis
  • CRISPR/Cas9 technology is a promising method for treating genetic diseases, but its effectiveness is limited by the availability of suitable delivery systems for the Cas9/sgRNA ribonucleoprotein (RNP).
  • This study explores dual pH-responsive amphiphilic xenopeptides (XPs) for delivering CRISPR/Cas9 RNP, demonstrating successful cellular uptake and genome editing in various cell lines, including a model for Duchenne muscular dystrophy (DMD).
  • Notably, modified xenopeptides increased gene editing efficiency, with some achieving an EC50 value as low as 0.51 nM, indicating improved potential for therapeutic applications.
View Article and Find Full Text PDF

Generation of Ext1 Gene-Edited Mice Model Via Dual sgRNAs/Cas9 System and Phenotypic Analyses.

Mol Biotechnol

November 2024

Key Laboratory of Medical Biotechnology and Translational Medicine (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, 541199, China.

Hereditary multiple exostoses (HME) is an autosomal dominant skeletal disease. Genetic linkage analyses have identified that mutations in the exostosin glycosyltransferase (EXT)1 and EXT2 genes are linked to HME pathogenesis, with EXT1 mutation being the most frequent. The aim of this study was to generate a mice model with Ext1 gene editing to simulate human EXT1 mutation and investigate the genetic pathogenicity of Ext1 through phenotypic analyses.

View Article and Find Full Text PDF
Article Synopsis
  • Traditional overexpression techniques struggle to accurately analyze protein-protein interactions and expression in B lymphocytes due to their resistance to lipid transfection.
  • The article discusses advanced CRISPR/Cas9 knock-in methods that increase efficiency in tagging endogenous proteins, along with protocols for optimizing cutting efficiency and sgRNA selection.
  • Detailed methodologies for engineering B lymphoma cells are provided, including assessing editing efficiency, designing repair templates, electroporation, and selecting engineered cells, enabling broader application in other cell types.
View Article and Find Full Text PDF

Use of paired Cas9-NG nickase and truncated sgRNAs for single-nucleotide microbial genome editing.

Front Genome Ed

September 2024

Department of Systems Biotechnology, Institute of Microbiomics, Chung-Ang University, Anseong, Republic of Korea.

The paired nickases approach, which utilizes clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) nickase and dual guide RNA, has the advantage of reducing off-target effects by being able to double the target sequence. In this study, our research utilized the Cas9-NG nickase variant to minimize PAM sequence constraints, enabling the generation of paired nicks at desired genomic loci. We performed a systematic investigation into the formation sites for double nicks and the design of donor DNA within a bacterial model system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!