Computational studies of ultrafast photoinduced processes give valuable insights into the photochemical mechanisms of a broad range of compounds. In order to accurately reproduce, interpret, and predict experimental results, which are typically obtained in a condensed phase, it is indispensable to include the condensed phase environment in the computational model. However, most studies are still performed in vacuum due to the high computational cost of state-of-the-art non-adiabatic molecular dynamics (NAMD) simulations. The quantum mechanical/molecular mechanical (QM/MM) solvation method has been a popular model to perform photodynamics in the liquid phase. Nevertheless, the currently used QM/MM embedding techniques cannot sufficiently capture all solute-solvent interactions. In this Perspective, we will discuss the efficient ΔSCF electronic structure method and its applications with respect to the NAMD of solvated compounds, with a particular focus on explicit quantum mechanical solvation. As more research is required for this method to reach its full potential, some challenges and possible directions for future research are presented as well.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0083340 | DOI Listing |
Acc Chem Res
January 2025
Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, Helmholtzstrasse 11, 89081 Ulm, Germany.
ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.
View Article and Find Full Text PDFSci Rep
January 2025
Faculty of Art and Science, Department of Chemistry, Yıldız Technical University, 34220, İstanbul, Türkiye.
In the present study, dispersive solid phase extraction - hydride generation integrated with micro-sampling gas-liquid separator - flame atomic absorption spectrometry was proposed to determine lead in lake water samples taken in the Horseshoe Island, Antarctica. In scope of this study, microwave assisted NiFeO nanoparticles were synthesized, and the characterization of nanoparticles were carried out by FT-IR, XRD and SEM. All influential parameters of dispersive solid phase extraction and hydride generation were optimized to enhance signal intensity belonging to the analyte.
View Article and Find Full Text PDFSci Data
January 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
As the occurrence of human diseases and conditions increase, questions continue to arise about their linkages to chemical exposure, especially for per-and polyfluoroalkyl substances (PFAS). Currently, many chemicals of concern have limited experimental information available for their use in analytical assessments. Here, we aim to increase this knowledge by providing the scientific community with multidimensional characteristics for 175 PFAS and their resulting 281 ion types.
View Article and Find Full Text PDFJ Pharmacol Toxicol Methods
January 2025
Department of Pharmacy, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Gastroenterology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. Electronic address:
Background: Upadacitinib is a selective Janus kinase (JAK) 1 inhibitor approved by the Food and Drug Administration for the treatment of moderate-to-severe inflammatory bowel disease (IBD). We aimed to establish and validate a method for determining Upadacitinib in patients with IBD by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method.
Methods: The mobile phase was 0.
J Colloid Interface Sci
January 2025
Department of Oncology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, PR China. Electronic address:
In recent years, the chiral biological effects of nanomedicines have garnered significant interest. Research has focused on understanding how material chirality affects cellular transcription and metabolism. Stress granules, which are membraneless organelles formed through liquid-liquid phase separation of G3BP1 proteins and related compartments, have been extensively studied and are closely associated with cellular damage repair and metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!