The role of TBK1 in cancer pathogenesis and anticancer immunity.

J Exp Clin Cancer Res

Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.

Published: April 2022

AI Article Synopsis

  • TBK1 is an important kinase in regulating inflammation and innate immunity, activated by pathogens and mutated oncogenes like K-RAS/N-RAS.
  • Although TBK1 mutations aren't found in human cancers, its abnormal activation is linked to various cancers, suggesting it as a potential treatment target.
  • Current research on TBK1 focuses on its role in cancer development and therapy, with some inhibitors tested, notably momelotinib, indicating promising avenues for future cancer treatments.

Article Abstract

The TANK-binding kinase 1 (TBK1) is a serine/threonine kinase belonging to the non-canonical inhibitor of nuclear factor-κB (IκB) kinase (IKK) family. TBK1 can be activated by pathogen-associated molecular patterns (PAMPs), inflammatory cytokines, and oncogenic kinases, including activated K-RAS/N-RAS mutants. TBK1 primarily mediates IRF3/7 activation and NF-κB signaling to regulate inflammatory cytokine production and the activation of innate immunity. TBK1 is also involved in the regulation of several other cellular activities, including autophagy, mitochondrial metabolism, and cellular proliferation. Although TBK1 mutations have not been reported in human cancers, aberrant TBK1 activation has been implicated in the oncogenesis of several types of cancer, including leukemia and solid tumors with KRAS-activating mutations. As such, TBK1 has been proposed to be a feasible target for pharmacological treatment of these types of cancer. Studies suggest that TBK1 inhibition suppresses cancer development not only by directly suppressing the proliferation and survival of cancer cells but also by activating antitumor T-cell immunity. Several small molecule inhibitors of TBK1 have been identified and interrogated. However, to this point, only momelotinib (MMB)/CYT387 has been evaluated as a cancer therapy in clinical trials, while amlexanox (AMX) has been evaluated clinically for treatment of type II diabetes, nonalcoholic fatty liver disease, and obesity. In this review, we summarize advances in research into TBK1 signaling pathways and regulation, as well as recent studies on TBK1 in cancer pathogenesis. We also discuss the potential molecular mechanisms of targeting TBK1 for cancer treatment. We hope that our effort can help to stimulate the development of novel strategies for targeting TBK1 signaling in future approaches to cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8994244PMC
http://dx.doi.org/10.1186/s13046-022-02352-yDOI Listing

Publication Analysis

Top Keywords

tbk1
13
tbk1 cancer
12
cancer
9
cancer pathogenesis
8
studies tbk1
8
cancer therapy
8
tbk1 signaling
8
targeting tbk1
8
role tbk1
4
pathogenesis anticancer
4

Similar Publications

Mink enteritis virus infection induced cell cycle arrest and autophagy for its replication.

Vet Microbiol

January 2025

Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong Province 271018, China; College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong Province 271018, China. Electronic address:

Mink enteritis virus (MEV) is an important pathogen causing mink viral enteritis. The mechanisms of cell cycle arrest induced by MEV infection and the roles of autophagy in MEV replication remain unclear. In this study, the roles of MEV NS1 protein in inducing cell cycle arrest were investigated, using the in vitro CRFK cell models.

View Article and Find Full Text PDF

Gut microbes of the cecum versus the colon drive more severe lethality and multi-organ damage.

Int Immunopharmacol

January 2025

Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China. Electronic address:

Intestinal perforations lead to a high risk of sepsis-associated morbidity and multi-organ dysfunctions. A perforation allows intestinal contents (IC) to enter the peritoneal cavity, causing abdominal infections. Right- and left-sided perforations have different prognoses in humans, but the mechanisms associated with different cecum and colon perforations remain unclear.

View Article and Find Full Text PDF

TBK1 Targeting Is Identified as a Therapeutic Strategy to Enhance CAR T-Cell Efficacy Using Patient-Derived Organotypic Tumor Spheroids.

Cancer Immunol Res

January 2025

Mass General Cancer Center, Krantz Family Center for Cancer Research, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

Novel therapeutic strategies are needed to improve the efficacy of chimeric antigen receptor (CAR) T cells as a treatment of solid tumors. Multiple tumor microenvironmental factors are thought to contribute to resistance to CAR T-cell therapy in solid tumors, and appropriate model systems to identify and examine these factors using clinically relevant biospecimens are limited. In this study, we examined the activity of B7-H3-directed CAR T cells (B7-H3.

View Article and Find Full Text PDF

/: Optic neuropathies are a category of illnesses that ultimately cause damage to the optic nerve, leading to vision impairment and possible blindness. Disorders such as dominant optic atrophy (DOA), Leber hereditary optic neuropathy (LHON), and glaucoma demonstrate intricate genetic foundations and varied phenotypic manifestations. This narrative review study seeks to consolidate existing knowledge on the genetic and molecular mechanisms underlying ocular neuropathies, examine genotype-phenotype correlations, and assess novel therapeutic options to improve diagnostic and treatment methodologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!