Connective tissue growth factor mediates bone morphogenetic protein 2-induced increase in hyaluronan production in luteinized human granulosa cells.

Reprod Biol Endocrinol

Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006, Zhejiang, China.

Published: April 2022

Background: Hyaluronan is the main component of the cumulus-oocyte complex (COC) matrix, and it maintains the basic structure of the COC during ovulation. As a member of the transforming growth factor β (TGF-β) superfamily, bone morphogenetic protein 2 (BMP2) has been identified as a critical regulator of mammalian folliculogenesis and ovulation. However, whether BMP2 can regulate the production of hyaluronan in human granulosa cells has never been elucidated.

Methods: In the present study, we investigated the effect of BMP2 on the production of hyaluronan and the underlying molecular mechanism using both immortalized (SVOG) and primary human granulosa-lutein (hGL) cells. The expression of three hyaluronan synthases (including HAS1, HAS2 and HAS3) were examined following cell incubation with BMP2 at different concentrations. The concentrations of the hyaluronan cell culture medium were determined by enzyme-linked immunosorbent assay (ELISA). The TGF-β type I receptor inhibitors (dorsomorphin and DMH-1) and small interfering RNAs targeting ALK2, ALK3, ALK6 and SMAD4 were used to investigate the involvement of TGF-β type I receptor and SMAD-dependent pathway.

Results: Our results showed that BMP2 treatment significantly increased the production of hyaluronan by upregulating the expression of hyaluronan synthase 2 (HAS2). In addition, BMP2 upregulates the expression of connective tissue growth factor (CTGF), which subsequently mediates the BMP2-induced increases in HAS2 expression and hyaluronan production because overexpression of CTGF enhances, whereas knockdown of CTGF reverses, these effects. Notably, using kinase inhibitor- and siRNA-mediated knockdown approaches, we demonstrated that the inductive effect of BMP2 on the upregulation of CTGF is mediated by the ALK2/ALK3-mediated SMAD-dependent signaling pathway.

Conclusions: Our findings provide new insight into the molecular mechanism by which BMP2 promotes the production of hyaluronan in human granulosa cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991488PMC
http://dx.doi.org/10.1186/s12958-022-00937-yDOI Listing

Publication Analysis

Top Keywords

production hyaluronan
16
growth factor
12
human granulosa
12
granulosa cells
12
hyaluronan
10
connective tissue
8
tissue growth
8
bone morphogenetic
8
morphogenetic protein
8
hyaluronan production
8

Similar Publications

Background: Viscosupplementation is a viable alternative for managing knee osteoarthritis, showing potential to delay the need for total joint replacement in affected patients.

Methods: We constructed an economic model that compared viscosupplementation with hylan G-F 20, with available hyaluronic acids, and no viscosupplementation over a 5-year period, from the perspective of the Colombian general health system. Time until total knee replacement, sourced from published literature, informed the model.

View Article and Find Full Text PDF

The therapeutic potential of L. extract has gained significant attention due to its diverse medical applications. Sublingual administration remains a common delivery method of cannabinoids; however, challenges often arise due to the inconvenient form of the extract and its taste.

View Article and Find Full Text PDF

A comprehensive review on microbial hyaluronan-degrading enzymes: from virulence factors to biotechnological tools.

Bioresour Bioprocess

December 2024

Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Lihu Avenue No. 1800, Wuxi, 214122, People's Republic of China.

Hyaluronan (HA), a natural high molecular weight polysaccharide, has extensive applications in cosmetology and medical treatment. Hyaluronan-degrading enzymes (Hyals) act as molecular scissors that cleave HA by breaking the glucosidic linkage. Hyals are present in diverse organisms, including vertebrates, invertebrates and microorganisms, and play momentous roles in biological processes.

View Article and Find Full Text PDF

Monotherapy has poor accuracy and is easily restricted by tumor microenvironment (TME). Remodeling components of the TME to activate multimodal cancer therapy with high precision and efficiency is worth exploring. A multifunctional nanoreactor was fabricated by decorating chlorin e6-modified and PEGylated hyaluronic acid bearing diethylenetriamine-conjugated dihydrolipoic acid on the surface of glucose oxidase (GOx)-loaded hollow mesoporous CuS nanoparticles (labeled as GOx@HCuS@HA).

View Article and Find Full Text PDF

Dual-function paper-based biosensor for sensitive detection of hyaluronidase and human papillomavirus DNA using diffusion wet area as readout.

Biosens Bioelectron

December 2024

Institute for Advanced Study, Research Center for Differentiation and Development of TCM Basic Theory, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China. Electronic address:

Herein, a novel dual-function paper-based biosensor using diffusion wet area as readout has been developed for simple and sensitive detection of hyaluronidase (HAase) and human papillomavirus (HPV) 16 DNA, respectively. The target-regulated-water absorption hydrogel synthesized by hyaluronic acid (HA) and single-stranded DNA (ssDNA) is chosen as an ideal material for diffusion wet area generation on paper. The hydrogel can be degraded through the enzymolysis of HA by HAase or the trans-cleavage of ssDNA by HPV DNA-activated CRISPR/cas12a system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!