Electronic resonances are states that are unstable towards loss of electrons. They play critical roles in high-energy environments across chemistry, physics, and biology but are also relevant to processes under ambient conditions that involve unbound electrons. This feature article focuses on complex-variable techniques such as complex scaling and complex absorbing potentials that afford a treatment of electronic resonances in terms of discrete square-integrable eigenstates of non-Hermitian Hamiltonians with complex energy. Fundamental aspects of these techniques as well as their integration into molecular electronic-structure theory are discussed and an overview of some recent developments is given: analytic gradient theory for electronic resonances, the application of rank-reduction techniques and quantum embedding to them, as well as approaches for evaluating partial decay widths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cc07090h | DOI Listing |
PLoS One
January 2025
Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
Objective: This study aimed to assess the feasibility of the deep learning in generating T2 weighted (T2W) images from diffusion-weighted imaging b0 images.
Materials And Methods: This retrospective study included 53 patients who underwent head magnetic resonance imaging between September 1 and September 4, 2023. Each b0 image was matched with a corresponding T2-weighted image.
Nano Lett
January 2025
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
Monolayer transition metal dichalcogenides are promising materials that not only are atomically thin but also have direct bandgaps, making them highly regarded in optics and optoelectronics. However, their photoluminescence exhibits almost random polarization at room temperature. The emission is also omnidirectional and weak due to the low quantum yield.
View Article and Find Full Text PDFNat Prod Bioprospect
January 2025
State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
A chemical investigation of Streptomyces sp. GZWMJZ-662, an endophytic actinomycete isolated from Houttuynia cordata Thunb., has yielded eleven bohemamine dimers (1-11).
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
Herein, we report the isolation of pyridine moiety-functionalized SiNSi pincer-based bis-silylene ligand () and its reactivity toward various halide precursors (X = Br and I) of group 13 elements (M = Al, Ga, and In). This gave us straightforward access to the SiNSi pincer-coordinated group 13 cations (-). These complexes are duly characterized by single-crystal X-ray diffraction studies, multinuclear magnetic resonance spectroscopy (H, C, and Si), and high-resolution mass spectrometry techniques.
View Article and Find Full Text PDFBiophys Rep
December 2024
Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Development and Translation of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China.
Fibroblast activation protein (FAP) is a key molecule in the field of oncology, with significant impacts on tumor diagnosis and treatment. Importantly, it has paved the way for the development of radiotracers for quinoline-based FAP inhibitors (FAPIs), which are currently among the most promising radiotracers for PET imaging in cancer. We performed a bibliometric analysis of scientific publications related to FAP and FAPI-based radiotracers, which included the quantification and visualization of current research trends and prospects based on various bibliometric indicators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!