Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In clinical positron emission tomography (PET) imaging, quantification of radiotracer uptake in tumours is often performed using semi-quantitative measurements such as the standardised uptake value (SUV). For small objects, the accuracy of SUV estimates is limited by the noise properties of PET images and the partial volume effect. There is need for methods that provide more accurate and reproducible quantification of radiotracer uptake.In this work, we present a deep learning approach with the aim of improving quantification of lung tumour radiotracer uptake and tumour shape definition. A set of simulated tumours, assigned with 'ground truth' radiotracer distributions, are used to generate realistic PET raw data which are then reconstructed into PET images. In this work, the ground truth images are generated by placing simulated tumours characterised by different sizes and activity distributions in the left lung of an anthropomorphic phantom. These images are then used as input to an analytical simulator to simulate realistic raw PET data. The PET images reconstructed from the simulated raw data and the corresponding ground truth images are used to train a 3D convolutional neural network.When tested on an unseen set of reconstructed PET phantom images, the network yields improved estimates of the corresponding ground truth. The same network is then applied to reconstructed PET data generated with different point spread functions. Overall the network is able to recover better defined tumour shapes and improved estimates of tumour maximum and median activities.Our results suggest that the proposed approach, trained on data simulated with one scanner geometry, has the potential to restore PET data acquired with different scanners.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6560/ac65d6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!