Effects and mechanisms of aged polystyrene microplastics on the photodegradation of sulfamethoxazole in water under simulated sunlight.

J Hazard Mater

Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science & Engineering, Beijing Forestry University, 35 Tsinghua East Road, Beijing 100083, China. Electronic address:

Published: July 2022

Pharmaceutical and microplastics (MPs) have been frequently detected in aquatic environment. In this study, the effects of polystyrene MPs (PS MPs) with different aging degrees on the photolysis of sulfamethoxazole (SMX) in simulated sunlit water were investigated. The results showed that the presence of PS MPs inhibited the photodegradation of SMX, and the photodegradation rate (k) of SMX was negatively correlated with the aging degree of PS MPs (R = 0.998). The aged PS MPs would cause light-screening effect, thereby reducing the photodegradation of SMX in sunlit water. Further, the free radical quenching experiment showed that the mechanism for inhibiting the photolysis of SMX was the reduction of the triplet excited state SMX (SMX*). According to sample characterization, aging PS MPs formed more unsaturated chromophores and produced organic intermediates that enhanced photon absorption. Additionally, aged PS MPs also decreased the types and yields of degradation products of SMX via product analysis. This study provides an insight into the environmental behaviors of SMX and the photochemical roles of aged MPs in sunlit surface waters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2022.128813DOI Listing

Publication Analysis

Top Keywords

aged mps
12
mps
9
smx
8
sunlit water
8
photodegradation smx
8
effects mechanisms
4
aged
4
mechanisms aged
4
aged polystyrene
4
polystyrene microplastics
4

Similar Publications

Clinical Manifestations.

Alzheimers Dement

December 2024

Department of Neurology, Division of Cognitive and Motor Aging, Albert Einstein College of Medicine, New York, NY, USA.

Background: Mild parkinsonian signs (MPS) are prevalent in older adults and linked to an increased risk of dementia. However, their association with Motoric Cognitive Risk syndrome (MCR), a pre-dementia syndrome characterized by slow gait speed and cognitive complaints, is unclear. This study aims to examine the association of MPS with incident MCR.

View Article and Find Full Text PDF

The underestimated environmental risk of tris (2-chloroethyl) phosphate photodegradation in aqueous environment induced by polystyrene microplastics.

Water Res

December 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China. Electronic address:

Tris(2-choroethyl) phosphate (TCEP) is commonly utilized as a flame retardant and plasticizer, which inevitably coexists with polystyrene microplastics (PS-MPs) in aquatic environments. In this work, the promoting effect of pristine and aged PS-MPs on the photodegradation of TCEP was observed, and the reaction mechanisms and environmental risks of PS-MPs enhancing TCEP photodegradation were clearly revealed. The aged PS-MPs presenting more significant enhancement was attributed to more generation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Nanoscale insight into the interaction mechanism underlying the transport of microplastics by bubbles in aqueous environment.

J Colloid Interface Sci

December 2024

School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China. Electronic address:

The ecological risk of microplastics (MPs) is raising concern about their transport and fate in aquatic ecosystems. The capture of MPs by bubbles is a ubiquitous natural phenomenon in water-based environment, which plays a critical role in the global cycling of MPs, thereby increasing their environmental threats. However, the nanoscale interaction mechanisms between bubbles and MPs underlying MPs transport by bubbles in complex environmental systems remain elusive.

View Article and Find Full Text PDF

When microplastics meet microalgae: Unveiling the dynamic formation of aggregates and their impact on toxicity and environmental health.

Water Res

December 2024

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

Microplastics (MPs) commonly coexist with microalgae in aquatic environments, can heteroaggregate during their interaction, and potentially affect the migration and impacts of MPs in aquatic environments. The hetero-aggregation may also influence the fate of other pollutants through MPs' adsorption or alter their aquatic toxicity. Here, we explored the hetero-aggregation process and its key driving mechanism that occurred between green microalga Chlorella vulgaris (with a cell size of 2-10 μm) and two types of MPs (polystyrene and polylactide, 613 μm).

View Article and Find Full Text PDF

Introduction: A novel method was established for the staging of midpalatal suture (MPS) ossification based on a pseudocoloring stack of anterior and posterior MPS coronal slices obtained by cone-beam computed tomography (CBCT).

Methods: CBCT scans of 240 subjects aged 5-35 years were pseudocolor processed. The slice thickness of stacked anterior and posterior coronal observation planes was set at 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!