Despite significant studies on the COVID-19 pandemic, scientists around the world are still battling to find a definitive therapy against the ongoing severe global health crisis. In this study, advanced computational approaches have been employed to identify bioactive food constituents as potential SARS-CoV-2 PLpro inhibitors-modulators. As a validated antiviral drug target, PLpro has gained tremendous attention for therapeutics developments. Therefore, targeting the multifunctional SARS-CoV-2 PLpro protein, ∼1039 bioactive dietary compounds have been screened extensively through novel techniques like negative image-based (NIB) screening and molecular docking approaches. In particular, the three different models of NIB screening have been generated and used to re-score the dietary compounds based on the negative image which is created by reversing the shape and electrostatics features of PLpro protein's ligand-binding cavity. Further, 100 ns molecular dynamics simulation has been performed and MM-GBSA based binding free energies have been estimated for the final proposed four dietary compounds (PC000550, PC000361, PC000558, and PC000573) as potential inhibitors/modulators of SARS-CoV-2 PLpro protein. Employed computational study outcome also has been compared with respect to the earlier experimentally investigated compound GRL0617 against SARS-CoV-2 PLpro protein, which suggests much greater interaction potential in terms of binding affinity and other energetic contributions for the proposed dietary compounds. Hence, the present study suggests that proposed dietary compounds can be suitable chemical entities for modulating the activity of PLpro protein or can be further utilized for optimizing or screening of novel chemical surrogates, however also needs experimental evaluation for entry in clinical studies for better assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8973019PMC
http://dx.doi.org/10.1016/j.compbiomed.2022.105474DOI Listing

Publication Analysis

Top Keywords

sars-cov-2 plpro
20
dietary compounds
20
plpro protein
16
proposed dietary
12
potential sars-cov-2
8
plpro
8
plpro inhibitors-modulators
8
negative image-based
8
nib screening
8
compounds
6

Similar Publications

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are a continuous threat to human life. An urgent need remains for simple and fast tests that reliably detect active infections with SARS-CoV-2 and its variants in the early stage of infection. Here we introduce a simple and rapid activity-based diagnostic (ABDx) test that identifies SARS-CoV-2 infections by measuring the activity of a viral enzyme, Papain-Like protease (PLpro).

View Article and Find Full Text PDF

Viral proteases play critical roles in the host cell and immune remodeling that allows virus production. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) papain-like protease (PLpro) encoded in the large nonstructural protein 3 (Nsp3) also possesses isopeptidase activity with specificity for ubiquitin and ISG15 conjugates. Here, we interrogated the cellular interactome of the SARS-CoV-2 PLpro catalytic domain to gain insight into the putative substrates and cellular functions affected by the viral deubiquitinase.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has significantly challenged global public health, highlighting the need for effective therapeutic options. This study focuses on the papain-like protease (PLpro) of SARS-CoV-2, which is a critical enzyme for viral polyprotein processing, maturation, and immune evasion. We employed a combined approach that began with computational models in a virtual screening campaign, prioritizing compounds from our in-house chemical library against PLpro.

View Article and Find Full Text PDF

Coronaviruses (CoVs) share key genomic elements critical for viral replication, suggesting the feasibility of developing therapeutics with efficacy across different viruses. In a previous work, we demonstrated the antiviral activity of the antipsychotic drug lurasidone against both SARS-CoV-2 and HCoV-OC43. In this study, our investigations on the mechanism of action of lurasidone suggested that the drug exhibits antiviral activity by targeting the papain-like protease (PL-Pro) of both viruses, and the Spike protein of SARS-CoV-2, thereby hampering both the entry and the viral replication.

View Article and Find Full Text PDF

Phthalimide derivatives as a new class of papain-like protease inhibitors in SARS-CoV-2.

Arch Pharm (Weinheim)

January 2025

Competence Center for Drug Discovery, Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland.

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) papain-like cysteine protease (PLpro) represents one of only two essential cysteine proteases involved in the regulation of viral replication. It, therefore, qualifies as a promising therapeutic target for the development of antiviral agents. We identified a previously synthesized protease inhibitor, resulting from an earlier project, as a PLpro inhibitor and crafted a structure-activity relationship around the hit, leading to the more potent inhibitors ZHAWOC6941 (17h) and ZHAWOC25153 (17o) displaying IC values of 8 and 7 µM, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!