Toxicity and persistence of microplastics (MP) in the marine environment has a potential to disturb the ecological balance of the planet. To evaluate the gravity of the situation, continuity in research of MP abundance is required. In this work for the first time a systematic literature review was conducted to build abundance datasets of MP at marine surface waters that were used to estimate average MP abundance and produce maps. Due to non-Gaussian distribution of the data, non-parametric statistics were used. The results show that an estimated average of approximately 6300 MP km MP float at the surface of the oceans. Additionally, observations of drawbacks in MP research that hamper inter-research comparability were made and these mainly include heterogeneity of methods and poor reporting practice. Basic guidelines to improve future research comparability were devised. Results provided here can be beneficial to research that requires a reliable and comparable MP abundance datasets sourced in a transparent and rigorous manner. These datasets are made available to the readers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.155064 | DOI Listing |
Sci Rep
January 2025
Environmental Geochemistry group, Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland.
The two-stage channel (TSC) design with a vegetated man-made floodplain has been recommended as an alternative to conventional re-dredging for managing suspended sediment (SS) and nutrient loads in agricultural streams. However, there are currently uncertainties surrounding the efficiency of TSCs, since mass balances covering the whole annual hydrograph and including different periods of the channel life cycle are lacking. This paper aims to improve understanding of the medium-term morphological development and sedimentary nutrient retention when a dredged, trapezoidal-shaped channel is converted into a TSC, using a mass balance estimate of nutrient and carbon retention from immediately after excavation until the establishment of approximate biogeochemical equilibrium retention.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington DC 20005, USA.
El Niño-Southern Oscillation (ENSO) exhibits a strong asymmetry between warm El Niño and cold La Niña in amplitude and temporal evolution. An El Niño often leads to a heat discharge in the equatorial Pacific conducive to its rapid termination and transition to a La Niña, whereas a La Niña persists and recharges the equatorial Pacific for consecutive years preconditioning development of a subsequent El Niño, as occurred in 2020-2023. Whether the multiyear-long heat recharge increases the likelihood of a transition to a strong El Niño remains unknown.
View Article and Find Full Text PDFMar Environ Res
December 2024
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
Lipophilic phycotoxins (LPTs) are toxic and lipophilic secondary metabolites produced by toxic microalgae, which pose a serious threat to marine shellfish culture industries. LPTs were systematically investigated in bottom seawater, suspended particulate matter (SPM), sediment, and sediment porewater of Laizhou Bay, a typical mariculture bay in China, to understand the chemical diversity and environment behaviors of LPTs in the benthic environments. Okadaic acid (OA), pectenotoxin-2 (PTX2), dinophysistoxin-1 (DTX1), azaspiracid-2 (AZA2), gymnodimine (GYM), pectenotoxin-2 seco acid (PTX2 SA), 7-epi- pectenotoxin-2 seco acid (7-epi-PTX2 SA), 13-desmethylspirolide C (SPX1), yessotoxin (YTX) and homo YTX (h-YTX) were detected in the benthic environment of Laizhou Bay in spring, indicating that LPTs are rich in chemical diversity.
View Article and Find Full Text PDFMar Environ Res
December 2024
Key Laboratory of Coastal Biology and Biological Resource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China. Electronic address:
Macroalgae widely distribute in intertidal zones, one of blue carbon organisms. However, the regulatory mechanisms of tide on the carbon sequestration of macroalgae are still unclear. This study explored the effects of desiccation-rewetting cycles induced by tide on dissolved organic carbon (DOC) release from Ulva pertusa, which is prevalent from high to low tidal zones.
View Article and Find Full Text PDFEcol Evol
January 2025
Institute of Sericulture, Applied Technology R and D Center for Special Sericulture of Hebei Province Universities Institute of Sericulture, Chengde Medical University Chengde China.
A new species of the genus Microcosmus was described in this study based on specimens collected from the coast of Xilian Town, Xuwen County, Zhanjiang, Guangdong Province, China. The morphological and molecular characteristics of this new species, sp. z YZ-2024 (YZ-2024), distinguish it from other sea squirts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!