For both, silver (Ag) and mercury (Hg), the median concentrations in an aqua regia extraction of minerogenic top- and subsoil from continental scale geochemical surveys (Australia, China, Europe) are around 0.02 mg/kg. When the soil O horizon is collected as topsoil sample, the concentration of again both elements is higher by about a factor of 10 (range 7-30), with median concentrations around 0.2 mg/kg Ag and Hg. Geochemical maps of top- and subsoil at different scales for both elements display regional patterns which reflect mainly geology, climate and topography. Anthropogenic sources like mines, power plants, or major cities visually occur only as local anomalies. For Ag in organogenic topsoil the maximum possible input due to diffuse contamination is estimated to be in the 0.02 mg/kg range, about 10% of the median concentration in the soil O horizon. For Hg this value is slightly higher at 0.03 mg/kg. In the soil O horizon Hg concentrations show less variability than in the C horizon. Substantial Hg soil contamination should lead to noticeably increased Hg/Ag ratios.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.155065DOI Listing

Publication Analysis

Top Keywords

soil horizon
12
diffuse contamination
8
silver mercury
8
median concentrations
8
top- subsoil
8
002 mg/kg
8
mg/kg soil
8
soil
5
quantifying diffuse
4
contamination comparing
4

Similar Publications

Outdoor microcosms, metabarcoding with next-generation sequencing of the 16S rRNA bacterial gene, total body score (TBS) and physicochemical analyses were used to monitor Mus musculus decomposition aboveground (A) and in the subsurface (S), and compared to soil-only controls (C). As determined by MaAsLin2 analysis, significant shifts in bacterial communities at 30 cm depths within the A, S and C treatments distinguished control from experimental soils, and between aboveground and subsurface deposition, demonstrating the potential for gravesoil discrimination during the first 90 days. For example, Dokdonella (p = 0.

View Article and Find Full Text PDF

Background: Aphanomyces root rot is one of the most severe diseases in sugar beet (Beta vulgaris L.), resulting in drastic losses in sugar yield and plant degeneration. The causal agent is the soil-borne pathogen Aphanomyces cochlioides, a phytopathogenic oomycete able to infect sugar beet roots from the seedling stage until harvest.

View Article and Find Full Text PDF

Assessment of spatial variability and temporal stability of groundwater redox conditions in New Zealand.

Environ Monit Assess

December 2024

Horizons Regional Council, Private Bag 11 025, Palmerston North, 4442, New Zealand.

Mitigating the impacts of agricultural nutrients (nitrogen and phosphorus) on water quality requires a clear understanding of their transport pathways and transformation processes from land to receiving waters. For nitrate, which is subject to subsurface denitrification, it is therefore important to assess the spatial variability and temporal stability of groundwater redox conditions, as nitrate reduction typically occurs in reducing conditions. This paper presents a robust assessment of a large groundwater quality data set collected across New Zealand landscapes, develops methods to impute missing groundwater redox-sensitive variables and characterises the spatial variability and temporal stability of groundwater redox conditions against relevant landscape hydrogeochemical characteristics.

View Article and Find Full Text PDF

Infiltration depth, rooting depth, and regolith flushing-A global perspective.

PNAS Nexus

December 2024

CRETUS, Non-Linear Physics Group, Faculty of Physics, Universidade de Santiago de Compostela, Galicia 15782, Spain.

In the vegetation root zone, infiltration () parts in two directions with distinct Earth-system functions. One goes up as evapotranspiration ( + ), returning to the atmosphere (short-circuiting) and affecting short-term weather/climate and the carbon cycle. The other goes down as deep drainage (), flushing the regolith, mobilizing nutrients/contaminates and dissolved minerals into aquifers and rivers, eventually reaching the ocean (long-circuiting) thus regulating global biogeochemical cycles and long-term climate.

View Article and Find Full Text PDF

Root Exudation: An In-Depth Experimental Guide.

Plant Cell Environ

December 2024

Institute of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland.

Plants exude a wide variety of compounds into the rhizosphere, modulating soil functioning and diversity. The number of studies investigating exudation has exponentially increased over the past decades. Yet, the high inter-study variability of the results is slowing down our understanding of root-soil interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!