A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of Single-Molecule Catecholamine Enantiomers Using a Programmable Nanopore. | LitMetric

Identification of Single-Molecule Catecholamine Enantiomers Using a Programmable Nanopore.

ACS Nano

State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China.

Published: April 2022

Enantiomers, chiral isomers with opposite chirality, typically demonstrate differences in their pharmacological activity, metabolism, and toxicity. However, direct discrimination between enantiomers is challenging due to their similar physiochemical properties. Following the strategy of programmable nanoreactors for stochastic sensing (PNRSS), introduction of phenylboronic acid (PBA) to a porin A (MspA) assists in the identification of the enantiomers of norepinephrine and epinephrine. Using a machine learning algorithm, identification of the enantiomers has been achieved with an accuracy of 98.2%. The enantiomeric excess (ee) of a mixture of enantiomeric catecholamines was measured to determine the enantiomeric purity. This sensing strategy is a faster method for the determination of ee values than liquid chromatography-mass spectrometry and is useful as a quality control in the industrial production of enantiomeric drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c01017DOI Listing

Publication Analysis

Top Keywords

identification enantiomers
8
enantiomers
5
identification single-molecule
4
single-molecule catecholamine
4
catecholamine enantiomers
4
enantiomers programmable
4
programmable nanopore
4
nanopore enantiomers
4
enantiomers chiral
4
chiral isomers
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!