Japanese beetle, Popillia japonica Newman, is an invasive insect, native to Japan. The species was detected in the United States in New Jersey in 1916, and then first confirmed in Minnesota in 1968. Since their arrival, P. japonica has become a major pest in turfgrass and several crop agroecosystems. As P. japonica continues to spread throughout the U.S., it's important to discover more efficient ways to monitor adult populations. In 2018-2020, due to the high volume of P. japonica beetles collected in traps, a comparison of weight and volume calibration methods was conducted in Minnesota. Each method yielded a strong goodness of fit with counts of beetles captured. However, with a goal of cost-effective use of traps and in-field estimates, the volume-based approach was the preferred, most efficient method. In addition, a comparison of monitoring systems was conducted to observe differences in trap type, lure age, and check interval. Results from these studies indicate a standard green/yellow trap, and multi-component, semiochemical-based lure used for the duration of the P. japonica flight period, and a weekly check interval will minimize sampling time and resources, while providing accurate population estimates. In addition, results from these studies will benefit growers and researchers as they continue to explore integrated pest management (IPM) strategies for P. japonica. More importantly, by reducing the time required to quantify trap catches and rebait traps, these results may also facilitate area-wide tracking of P. japonica populations in newly invaded regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175288PMC
http://dx.doi.org/10.1093/jee/toac049DOI Listing

Publication Analysis

Top Keywords

japonica
8
popillia japonica
8
check interval
8
optimizing semiochemical-based
4
traps
4
semiochemical-based traps
4
traps efficient
4
efficient monitoring
4
monitoring popillia
4
japonica coleoptera
4

Similar Publications

Natural variation of CTB5 confers cold adaptation in plateau japonica rice.

Nat Commun

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.

During cold acclimation in high-latitude and high-altitude regions, japonica rice develops enhanced cold tolerance, but the underlying genetic basis remains unclear. Here, we identify CTB5, a homeodomain-leucine zipper (HD-Zip) transcription factor that confers cold tolerance at the booting stage in japonica rice. Four natural variations in the promoter and coding regions enhance cold response and transcriptional regulatory activity, enabling the favorable CTB5 allele to improve cold tolerance.

View Article and Find Full Text PDF

Lead (Pb), a toxic metal, causes severe health hazards to both humans and plants due to environmental pollution. Biochar addition has been efficiently utilized to enhance growth of plants as well as yield in the presence of Pb-induced stress. The present research introduces a novel use of biochar obtained from the weed Achyranthes japonica to enhance the growth of plants in Pb-contaminated soil.

View Article and Find Full Text PDF

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

Natural Enemies Acquire More Prey Aphids from Hormone-Treated Insect-Attracting Plants.

Plants (Basel)

January 2025

Shandong Key Laboratory for Green Prevention and Control of Agricultural Pests, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China.

Exogenous plant hormones regulate the agronomic and physiological performance of plants and thus can influence the abundance of insect groups. We surveyed the arthropods on flowering plants and found that the abundance of natural enemies and in the plots treated with salicylic acid (SA) and indole acetic acid (IAA) was significantly increased compared with those in the clean water (control) plots. Then, we investigated the effects of spraying SA, IAA, and clean water on the population parameters of reared on Our results from the age-stage, two-sex life table analysis revealed a significantly shorter pre-adult duration for aphids reared on SA-treated compared to those reared on the other two treatments.

View Article and Find Full Text PDF

Antibody Responses and the Vaccine Efficacy of Recombinant Glycosyltransferase and Nicastrin Against .

Pathogens

January 2025

National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.

Schistosomiasis is a neglected tropical disease and the second most common parasitic disease after malaria. While praziquantel remains the primary treatment, concerns about drug resistance highlight the urgent need for new drugs and effective vaccines to achieve sustainable control. Previous proteomic studies from our group revealed that the expression of glycosyltransferase and nicastrin as proteins was higher in single-sex males than mated males, suggesting their critical roles in parasite reproduction and their potential as vaccine candidates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!