Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The gradient expansion is the fundamental organizing principle underlying relativistic hydrodynamics, yet understanding its convergence properties for general nonlinear flows has posed a major challenge. We introduce a simple method to address this question in a class of fluids modeled by Israel-Stewart-type relaxation equations. We apply it to (1+1)-dimensional flows and provide numerical evidence for factorially divergent gradient expansions. This generalizes results previously only obtained for (0+1)-dimensional comoving flows, notably Bjorken flow. We also demonstrate that the only known nontrivial case of a convergent hydrodynamic gradient expansion at the nonlinear level relies on Bjorken flow symmetries and becomes factorially divergent as soon as these are relaxed. Finally, we show that factorial divergence can be removed using a momentum space cutoff, which generalizes a result obtained earlier in the context of linear response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.128.122302 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!