Thyroid hormones are involved in numerous physiological processes as regulators of metabolism, regulating organ growth, and mental state. Bisphenol compounds (BPs) are recognized as chemicals that interfere with endocrine balance. Because BPs have a similar structure to thyroxine, they can compete for binding to thyroid protein and disrupt the normal physiological activity of the thyroid system. In this study, three typical bisphenol compounds were selected to explore the interaction between BPs and TTR by computer simulations and multi-spectroscopic methods. The results revealed that BPs quenched the endogenous fluorescence of TTR via the combination of static quenching and non-radiative energy transfer, and the van der Waals forces and hydrogen bonding played a synergistic role in the binding process of BPs and TTR. Furthermore, the three-dimensional fluorescence spectroscopy, UV-vis spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy, which were employed to determine the conformation of protein, revealed that binding of BPs with TTR could induce conformational changes in TTR. In addition, the binding sites and the residues surrounding the BPs within the TTR were determined through molecular docking and molecular dynamics simulation. Therefore, this work provides new insights into the interaction between BPs and TTR to evaluate the potential toxicity of BPs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-022-04028-0DOI Listing

Publication Analysis

Top Keywords

bps ttr
20
bisphenol compounds
12
bps
10
compounds bps
8
ttr
8
multi-spectroscopic methods
8
interaction bps
8
binding
5
insight microscopic
4
microscopic binding
4

Similar Publications

Article Synopsis
  • The study investigates the effects of bisphenol F (BPF) and bisphenol S (BPS), two chemicals used as substitutes for BPA, on thyroid hormone levels in adult zebrafish.
  • Researchers used a specific monoclonal antibody to detect changes in a protein (transthyretin, or TTR) related to thyroid function, finding that exposure to both chemicals significantly increased TTR levels in various tissues.
  • Results showed that BPF and BPS elevated thyroid hormone levels and negatively impacted thyroid tissue structure, with BPF having a more profound effect than BPS on the overall thyroid function in the zebrafish.
View Article and Find Full Text PDF

Thyroid-disrupting chemicals (TDCs) have received increasing concerns because of their negative health impacts on both wildlife and humans. This study aimed to develop in vitro screening assays for TDCs based on thyroid hormone receptor β (TRβ) and transthyretin (TTR) proteins. Firstly, the recombinant ligand-binding domain of TRβ (TRβ-LBD) and TTR proteins of zebrafish were produced by eukaryotic expression system and then used as bio-recognition components to construct electrochemical biosensors.

View Article and Find Full Text PDF

Thyroid hormones are involved in numerous physiological processes as regulators of metabolism, regulating organ growth, and mental state. Bisphenol compounds (BPs) are recognized as chemicals that interfere with endocrine balance. Because BPs have a similar structure to thyroxine, they can compete for binding to thyroid protein and disrupt the normal physiological activity of the thyroid system.

View Article and Find Full Text PDF

Background And Objective: Glycemic control, especially meal-related disturbance rejection, has proven to be a major challenge for people with type 1 diabetes. In this manuscript, we introduce a novel, personalized, advanced hybrid insulin infusion system (a.k.

View Article and Find Full Text PDF

Bisphenols emerging in Norwegian and Czech aquatic environments show transthyretin binding potency and other less-studied endocrine-disrupting activities.

Sci Total Environ

January 2021

University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.

Bisphenols are increasingly recognized as environmental pollutants with endocrine-disrupting potential. Nonetheless, the study of environmental occurrence and some endocrine-disrupting activities of some bisphenols came widely into focus of research only recently. The aims of the present study were to: 1) determine the predominant bisphenols in Norwegian sewage sludge and sediment and in Czech surface waters, and 2) characterize the binding of bisphenols to a transport protein transthyretin (TTR) and their (anti-)thyroid, (anti-)progestagenic, and (anti-)androgenic activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!