A complex network of trade-offs exists between wheat quality and nutritional traits. We investigated the correlated relationships among several milling and baking traits as well as mineral density in refined white and whole grain flour. Our aim was to determine their pleiotropic genetic control in a multi-parent population over two trial years with direct application to practical breeding. Co-location of major quantitative trait loci (QTL) and principal component based multi-trait QTL mapping increased the power to detect QTL and revealed pleiotropic effects explaining many complementary and antagonistic trait relationships. High molecular weight glutenin subunit genes explained much of the heritable variation in important dough rheology traits, although additional QTL were detected. Several QTL, including one linked to the TaGW2 gene, controlled grain size and increased flour extraction rate. The semi-dwarf Rht-D1b allele had a positive effect on Hagberg falling number, but reduced grain size, specific weight, grain protein content and flour water absorption. Mineral nutrient concentrations were lower in Rht-D1b lines for many elements, in wholemeal and white flour, but potassium concentration was higher in Rht-D1b lines. The presence of awns increased calcium content without decreasing extraction rate, despite the negative correlation between these traits. QTL were also found that affect the relative concentrations of key mineral nutrients compared to phosphorus which may help increase bioavailability without associated anti-nutritional effects of phytic acid. Taken together these results demonstrate the potential for marker-based selection to optimise trait trade-offs and enhance wheat nutritional value by considering pleiotropic genetic effects across multiple traits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178040PMC
http://dx.doi.org/10.1038/s41437-022-00503-7DOI Listing

Publication Analysis

Top Keywords

genetic control
8
pleiotropic genetic
8
grain size
8
extraction rate
8
rht-d1b lines
8
traits
6
qtl
6
trade-offs genetic
4
control functional
4
functional nutritional
4

Similar Publications

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Background: Interleukin-1 receptor-associated kinase1 (IRAK1) plays a considerable role in the inflammatory signaling pathway. The current study aimed to identify any association between (rs1059703) single nucleotide polymorphism (SNP) and vulnerability to rheumatological diseases in the pediatric and adult Egyptian population.

Patients And Methods: The current study included four patient groups: adult Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), juvenile systemic lupus erythematosus (JSLE), and juvenile idiopathic arthritis (JIA).

View Article and Find Full Text PDF

Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Post-traumatic epilepsy (PTE) is a debilitating chronic outcome of traumatic brain injury (TBI). Although FTO has been reported as a possible intervention target of TBI, its precise roles in the PTE remain incompletely understood. Here we used mild or serious mice TBI model to probe the role and molecular mechanism of FTO in PTE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!