Most in vivo animal research and breeding using mice and rats in China takes place in facilities under barrier conditions. Items being moved across the barrier are typically disinfected using UV radiation in a transfer hatch. However, the time periods necessary for this disinfection technique are inefficient, and disinfection is frequently incomplete, especially if concealed surfaces are present. The current study used a newly developed transfer hatch incorporating both UV and ozone disinfection to examine disinfection efficacy against 4 bacteria species ( and ). Disinfection trials used UV and ozone, applied separately and in combination, for up to 30 min. Separate and combined treatments were also tested with a UV barrier. We found that if UV radiation has direct contact with surfaces, it is an efficient disinfection method. However, where surfaces are concealed by a UV barrier, UV radiation performs relatively poorly. The results of this study indicate that a combination of UV and ozone produces the most effective disinfection and is markedly quicker than current disinfection times for UV applied on its own. This novel transfer hatch design therefore allows more complete and efficient disinfection, improves workflow, and reduces barrier breaches by pathogens that may affect animal health and welfare and compromise research outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9137290 | PMC |
http://dx.doi.org/10.30802/AALAS-JAALAS-21-000131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!