Sunflowers are agricultural seed crops that can be used for essential edible oils and ornamental purposes. This cash crop is primarily cultivated in North and South America. Sunflower crops are prone to various diseases, insects, and nematodes, resulting in a wide range of production losses. Digital image processing and computer vision approaches have been widely utilized to categorize and detect plant diseases including leaves, fruits, and flowers over the last few decades. Early diagnosis of infections in sunflowers helps to prevent them from spreading throughout the farm and reducing financial losses to the farmers. This article offers a resourceful dataset of sunflower leaves and flowers that will help the researchers in developing effective algorithms for the detection of diseases. The dataset contains healthy and affected sunflower leaves and flowers with downy mildew, gray mold, and leaf scars. The images were captured manually between 25 to 29 November 2021 from the demonstration farm of Bangladesh Agricultural Research Institute (BARI) at Gazipur in cooperation with its one domain expert when the sunflower plants were about to bloom and the maximum diseases can be found. The dataset is hosted by the Department of Computer Science and Engineering, National Institute of Textile Engineering and Research (NITER), Bangladesh and freely available at https://data.mendeley.com/datasets/b83hmrzth8/1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980537 | PMC |
http://dx.doi.org/10.1016/j.dib.2022.108043 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!