Purpose: Due to the extensive consumption of silver-containing compound, silver resistance spreads among gram-negative pathogens and is regarded as a great public problem. In this study, we investigated silver resistance mechanisms and antibiotic resistance genes co-harbored with operon among gram-negative pathogens isolated from wound samples.
Methods: A total of 193 strains of gram-negative pathogens were collected from wound samples between 2018 and 2020 in Xiangya hospital. Silver resistance was obtained by broth microdilution method. The silver resistance mechanisms and the prevalence, genetic environments, and coexistence with antibiotic resistance genes of operon were investigated by polymerase chain reaction (PCR) and whole genome sequencing (WGS).
Results: Among 193 strains, nine strains (4.7%) were resistant to Ag and assigned to the following species: (n = 5) and (n = 4). WGS confirmed that 24 strains carried the entire operon, including the four Ag-resistant and 20 Ag-susceptible strains, while PCR failed to detect some genes, especially , due to sequence variations. In seven strains, Tn7 transposon was identified in the upstream of operon. Spontaneous mutants resistant to Ag were induced in 15 out of 20 Ag-susceptible strains, including strains belonged to high-risk groups (ST11 and ST15). The -positive strains harbored various antibiotic resistance genes, including and . WGS revealed that a single mutation in gene and loss of major porins conferred silver resistance in the five strains.
Conclusion: Our findings emphasize the cryptic silver resistance is prevalent among Enterobacteriaceae with operon or with the combination of operon and major porin loss and increase the understanding of the prevalence of operon with antibiotic resistance genes, especially and .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982571 | PMC |
http://dx.doi.org/10.2147/IDR.S358730 | DOI Listing |
Cell Biochem Funct
January 2025
Central Research Laboratory, Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, India.
The biosynthesis of silver nanoparticles (AgNPs) using cyanobacteria has gained significant attention due to its cost-effective and eco-friendly advantages in green synthesis. Additionally, biogenic AgNPs show great potential for biological applications, particularly in combating infections caused by drug-resistant bacteria and fungi. This study synthesized using the cyanobacterium Oscillatoria salina (Os-AgNPs).
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China.
With the rapid development of modern science and technology and the diversification of social needs, traditional single-performance materials struggle to meet the complex and changeable application scenarios. To address the multifaceted requirements of biomedical applications, such as disease diagnosis and treatment, scientists are dedicated to developing new multifunctional biomaterials with multiple activities. BiTiO (BTO), despite its versatility and application potential, has insufficient photocatalytic performance.
View Article and Find Full Text PDFFront Microbiol
January 2025
Laboratory of Biotechnology, Department of Microbiology, Agricultural Research Center, Animal Health Research Institute, Zagazig, Egypt.
Background: is a significant nosocomial pathogen that has developed resistance to multiple antibiotics, often forming biofilms that enhance its virulence. This study investigated the efficacy of a novel nanoformulation, AgNPs@chitosan-NaF, in combating biofilms.
Methods: Antimicrobial susceptibility testing was performed to assess the antibiotic resistance profile of isolates.
Discov Nano
January 2025
Department of Biotechnology, Alagappa University, Karaikudi, 630003, India.
Diabetic wounds with chronic infections present a significant challenge, exacerbated by the growing issue of antimicrobial resistance, which often leads to delayed healing and increased morbidity. This study introduces a novel silver-zinc oxide-eugenol (Ag+ZnO+EU) nanocomposite, specifically designed to enhance antimicrobial activity and promote wound healing. The nanocomposite was thoroughly characterized using advanced analytical techniques, confirming its nanoscale structure, stability and chemical composition.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology-Guwahati, Guwahati, Assam, 781039, India.
The design of electrically conductive textiles appears to be a promising approach to combat the existing challenge of deaths caused by severe cold climates around the globe. However, reports on the scalable fabrication of tolerant conductive textiles maintaining a low electrical resistance with an ability for unperturbed and prolonged performance are scarce. Here, a breathable and wrappable water-repellent conductive textile (water-repellent CT) with electrothermal and photothermal conversion abilities at low external voltage and in weak solar light is introduced, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!