The entire world has recently been witnessing an unprecedented upsurge in microbial lung infections. The major challenge encountered in treating the same is to ensure the optimum drug availability at the infected site. Aerosolization of antimicrobials, in this regard, has shown immense potential owing to their localized and targeted effect. Efforts, therefore, have been undertaken to systematically develop lung-phosphatidylcholine-based lipid nanovesicles of voriconazole for potential management of the superinfections like aspergillosis. LNVs, prepared by thin-film hydration method, exhibited a globule size of 145.4 ± 19.5 nm, polydispersity index of 0.154 ± 0.104 and entrapment efficiency of 71.4 ± 2.2% with improved antifungal activity. Aerodynamic studies revealed a microdroplet size of ≤5 μm, thereby unraveling its promise to target the physical barrier of lungs effectively. The surface-active potential of LNVs, demonstrated through Langmuir-Blodgett troughs, indicated their ability to overcome the biochemical pulmonary surfactant monolayer barrier, while the safety and uptake studies on airway-epithelial cells signified their immense potential to permeate the cellular barrier of lungs. The pharmacokinetic studies showed marked improvement in the retention profile of voriconazole in lungs following LNVs nebulization compared to pristine voriconazole. Overall, LNVs proved to be safe and effective delivery systems, delineating their distinct potential to efficiently target the respiratory fungal infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982086PMC
http://dx.doi.org/10.3389/fphar.2021.734913DOI Listing

Publication Analysis

Top Keywords

immense potential
8
barrier lungs
8
potential
5
aerosolizable lipid-nanovesicles
4
lipid-nanovesicles encapsulating
4
voriconazole
4
encapsulating voriconazole
4
voriconazole effectively
4
effectively permeate
4
permeate pulmonary
4

Similar Publications

Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation.

View Article and Find Full Text PDF

In this comprehensive review, we delve into the transformative role of artificial intelligence (AI) in refining the application of multi-omics and spatial multi-omics within the realm of diffuse large B-cell lymphoma (DLBCL) research. We scrutinized the current landscape of multi-omics and spatial multi-omics technologies, accentuating their combined potential with AI to provide unparalleled insights into the molecular intricacies and spatial heterogeneity inherent to DLBCL. Despite current progress, we acknowledge the hurdles that impede the full utilization of these technologies, such as the integration and sophisticated analysis of complex datasets, the necessity for standardized protocols, the reproducibility of findings, and the interpretation of their biological significance.

View Article and Find Full Text PDF

Introduction: The convergence of healthcare with the Internet of Things (IoT) and Artificial Intelligence (AI) is reshaping medical practice with promising enhanced data-driven insights, automated decision-making, and remote patient monitoring. It has the transformative potential of these technologies to revolutionize diagnosis, treatment, and patient care.

Purpose: This study aims to explore the integration of IoT and AI in healthcare, outlining their applications, benefits, challenges, and potential risks.

View Article and Find Full Text PDF

Biomedical data analytics for better patient outcomes.

Drug Discov Today

December 2024

Hamta Business Corporation, Vancouver, Canada; University Canada West, Vancouver, Canada; Westcliff University, Irvine, USA. Electronic address:

Medical professionals today have access to immense amounts of data, which enables them to make decisions that enhance patient care and treatment efficacy. This innovative strategy can improve global health care by bridging the divide between clinical practice and medical research. This paper reviews biomedical developments aimed at improving patient outcomes by addressing three main questions regarding techniques, data sources and challenges.

View Article and Find Full Text PDF

The recent advancements in cancer immunotherapy have spotlighted the potential of natural killer (NK) cells, particularly chimeric antigen receptor (CAR)-transduced NK cells. These cells, pivotal in innate immunity, offer a rapid and potent response against cancer cells and pathogens without the need for prior sensitization or recognition of peptide antigens. Although NK cell genetic modification is evolving, the viral transduction method continues to be inefficient and fraught with risks, often resulting in cytotoxic outcomes and the possibility of insertional mutagenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!