Telemedicine has traditionally been applied within remote settings to overcome geographical barriers to healthcare access, providing an alternate means of connecting patients to specialist services. The coronavirus 2019 pandemic has rapidly expanded the use of telemedicine into metropolitan areas and enhanced global telemedicine capabilities. Through our experience of delivering real-time telemedicine over the past decade within a large outreach eye service, we have identified key themes for successful implementation which may be relevant to services facing common challenges. We present our journey toward establishing a comprehensive teleophthalmology model built on the principles of collaborative care, with a focus on delivering practical lessons for service design. Artificial intelligence is an emerging technology that has shown potential to further address resource limitations. We explore the applications of artificial intelligence and the need for targeted research within underserved settings in order to meet growing healthcare demands. Based on our rural telemedicine experience, we make the case that similar models may be adapted to urban settings with the aim of reducing surgical waitlists and improving efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8982071PMC
http://dx.doi.org/10.3389/fmed.2022.835804DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
12
outreach eye
8
telemedicine
6
benefits integrating
4
integrating telemedicine
4
telemedicine artificial
4
intelligence outreach
4
eye care
4
care stepwise
4
stepwise approach
4

Similar Publications

Analyzing microbial samples remains computationally challenging due to their diversity and complexity. The lack of robust de novo protein function prediction methods exacerbates the difficulty in deriving functional insights from these samples. Traditional prediction methods, dependent on homology and sequence similarity, often fail to predict functions for novel proteins and proteins without known homologs.

View Article and Find Full Text PDF

Optimizing demand response and load balancing in smart EV charging networks using AI integrated blockchain framework.

Sci Rep

December 2024

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.

The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.

View Article and Find Full Text PDF

Vertebral collapse (VC) following osteoporotic vertebral compression fracture (OVCF) often requires aggressive treatment, necessitating an accurate prediction for early intervention. This study aimed to develop a predictive model leveraging deep neural networks to predict VC progression after OVCF using magnetic resonance imaging (MRI) and clinical data. Among 245 enrolled patients with acute OVCF, data from 200 patients were used for the development dataset, and data from 45 patients were used for the test dataset.

View Article and Find Full Text PDF

Accurate diagnosis of oral lesions, early indicators of oral cancer, is a complex clinical challenge. Recent advances in deep learning have demonstrated potential in supporting clinical decisions. This paper introduces a deep learning model for classifying oral lesions, focusing on accuracy, interpretability, and reducing dataset bias.

View Article and Find Full Text PDF

With breakthroughs in Natural Language Processing and Artificial Intelligence (AI), the usage of Large Language Models (LLMs) in academic research has increased tremendously. Models such as Generative Pre-trained Transformer (GPT) are used by researchers in literature review, abstract screening, and manuscript drafting. However, these models also present the attendant challenge of providing ethically questionable scientific information.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!