A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and Validation of an AI-driven Mammographic Breast Density Classification Tool Based on Radiologist Consensus. | LitMetric

Development and Validation of an AI-driven Mammographic Breast Density Classification Tool Based on Radiologist Consensus.

Radiol Artif Intell

Department of Biomedical Sciences for Health (V.M., A.C., D.C., C.B.M., F.S.) and Postgraduate School in Radiodiagnostics (A.A.A., S.C., G.D.P., G.G., G.M., G.P.), Università degli Studi di Milano, Milan, Italy; DeepTrace Technologies, Milan, Italy (M.I., C.S.); Unit of Diagnostic Imaging and Stereotactic Radiosurgery, C.D.I. Centro Diagnostico Italiano, Milan, Italy (M.A., D.F., S.P.); Bracco Imaging, Milan, Italy (M.A.); Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy (C.S.); Unit of Radiology, IRCCS Policlinico San Donato, San Donato Milanese, Italy (S.S., F.S.); Institute of Biomedical Imaging and Physiology, Consiglio Nazionale delle Ricerche, Segrate, Italy (I.C.); and Department of Physics, Università degli Studi di Milano-Bicocca, Milan, Italy (I.C.).

Published: March 2022

Mammographic breast density (BD) is commonly visually assessed using the Breast Imaging Reporting and Data System (BI-RADS) four-category scale. To overcome inter- and intraobserver variability of visual assessment, the authors retrospectively developed and externally validated a software for BD classification based on convolutional neural networks from mammograms obtained between 2017 and 2020. The tool was trained using the majority BD category determined by seven board-certified radiologists who independently visually assessed 760 mediolateral oblique (MLO) images in 380 women (mean age, 57 years ± 6 [SD]) from center 1; this process mimicked training from a consensus of several human readers. External validation of the model was performed by the three radiologists whose BD assessment was closest to the majority (consensus) of the initial seven on a dataset of 384 MLO images in 197 women (mean age, 56 years ± 13) obtained from center 2. The model achieved an accuracy of 89.3% in distinguishing BI-RADS a or b (nondense breasts) versus c or d (dense breasts) categories, with an agreement of 90.4% (178 of 197 mammograms) and a reliability of 0.807 (Cohen κ) compared with the mode of the three readers. This study demonstrates accuracy and reliability of a fully automated software for BD classification. Mammography, Breast, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms © RSNA, 2022.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8980865PMC
http://dx.doi.org/10.1148/ryai.210199DOI Listing

Publication Analysis

Top Keywords

mammographic breast
8
breast density
8
visually assessed
8
software classification
8
convolutional neural
8
mlo images
8
women age
8
age years
8
learning algorithms
8
development validation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!