This study investigated the concentration of heavy metals in rainwater (RW) at a semi-arid region of the Indo-Gangetic basin to understand the influence of local, regional, or long-range transport of air pollutants during the monsoon and non-monsoonal rain. The concentration of heavy metals in RW was determined using Atomic Absorption Spectrophotometer with Graphite Furnace, the scavenging ratio was estimated, and source interpretation was carried out using Principle Component Analysis (PCA) and HYSPLIT model. Ca was the highest contributor in RW followed by Na, Fe, Mg, and Al whereas Ba, Cr, Cu, Mn, Ni, Pb, and Zn were found in trace quantity. During the non-monsoon period, the crustal component (Ca) was the highest; however, during the monsoon, sea salt components (Na and Fe) were found higher. The scavenging ratio for metals was estimated and was found many times higher than those reported over European sites. The moderate concentration of heavy metal in RW was found with higher wind from South (S), South-West (SW), and North-West (NW) directions. Air mass back trajectory shows a significant contribution of metals from the Arabian Sea (South-Westerly wind) during active monsoon, whereas, in the non-monsoon season, the air masses mainly originated from the north-west indicating a contribution from wind-blown dust. The correlation analysis has shown the positive correlations between Ca and Mg, Mg and Na, Na and Cu, Al and Zn, Zn and Ba, Ba and Cr, and Cr and Zn. Principal Component Analysis (PCA) indicated loading of Ca, Na, Mg, Cu, Mn, and Ni in the first factor suggesting their crustal origin, whereas the second factor showed high loading of Al, Ba, Zn, Cr, and Ni indicating vehicular exhaust and industrial emission as their major sources, and loading for Ba and Mg in the third factor indicates the mixed contribution from both natural and anthropogenic sources in rainwater during the monsoon and non-monsoon periods. The data of this study can be used in the air pollution transport model. This study will help in source interpretation over the Indo-Gangetic basin and will help in planning for National Clean Air Program (NCAP) and deriving critical load.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-022-01236-6DOI Listing

Publication Analysis

Top Keywords

indo-gangetic basin
12
concentration heavy
12
heavy metals
8
scavenging ratio
8
source interpretation
8
component analysis
8
analysis pca
8
monsoon non-monsoon
8
will help
8
air
5

Similar Publications

The presence of pharmaceutical and personal care products (PPCPs) in the environment poses a significant threat to environmental resources, given their potential risks to ecosystems and human health, even in trace amounts. While mathematical modelling offers a comprehensive approach to understanding the fate and transport of PPCPs in the environment, such studies have garnered less attention compared to field and laboratory investigations. This review examines the current state of modelling PPCPs, focusing on their sources, fate and transport mechanisms, and interactions within the whole ecosystem.

View Article and Find Full Text PDF

The high frequency of flood occurrences and the uneven distribution of hydrological stations make it difficult to monitor large-scale floods. Emergence of the Gravity Recovery and Climate Experiment (GRACE) satellite system sets up a new era of large-scale flood monitoring without much reliance on in situ hydrological observations. The GRACE-derived flood potential index (FPI) exhibits its ability to monitor major events of 2003, 2004, 2007, and 2008 over the Indo-Gangetic-Brahmaputra Basin (IGBB).

View Article and Find Full Text PDF

Groundwater resources of the densely populated Indo-Gangetic Basin are under increasing pressure, not only from extensive groundwater abstraction, but also from contamination. In this study we aim to better understand how different recharge sources affect the hydrochemical and isotope composition of groundwater. We used the Hindon subbasin in Northern India as a case study.

View Article and Find Full Text PDF

A fundamental necessity in advancing sustainable crop production lies in the establishment of a reliable technique for assessing soil health. Soil health assessment is a challenge considering multiple interactions among dynamic indicators within various management strategies and agroecological contexts. Hence a study was conducted to determine the soil health variables, quantify the soil health index (SHI), and validate them with the productivity of rice (Oryza sativa L.

View Article and Find Full Text PDF

Paddy rice methane emissions, controlling factors, and mitigation potentials across Monsoon Asia.

Sci Total Environ

July 2024

Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.

Rice is a staple food for more than half of humanity, and 90 % of rice is grown and consumed in Asia. However, paddy rice cultivation creates an ideal environment for the production and release of methane (CH). How to estimate regional CH emissions accurately and how to mitigate them efficiently have been of key concern.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!