Carbon nanomaterials have become a promising anode material for potassium-ion batteries (KIBs) due to their abundant resources, low cost, and excellent conductivity. However, among carbon materials, the sluggish reaction kinetics and inferior cycle life severely restrict their commercial development as KIBs anodes. It is still a huge challenge to develop carbon materials with various structural advantages and ideal electrochemical properties. Therefore, it is imperative to find a carbon material with heteroatom doping and suitable nanostructure to achieve excellent electrochemical performance. Benefiting from a NaSOtemplate-assisted method and KOH activation process, the KOH activated nitrogen and oxygen co-doped tubular carbon (KNOCTC) material with a porous structure exhibits an impressive reversible capacity of 343 mAh gat 50 mA gand an improved cyclability of 137 mAh gat 2 A gafter 3000 cycles with almost no capacity decay. The kinetic analysis indicates that the storage mechanism in KNOCTC is attributed to the pseudocapacitive process during cycling. Furthermore, the new synthesis route of KNOCTC provides a new opportunity to explore carbon-based potassium storage anode materials with high capacity and cycling performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac6527 | DOI Listing |
Front Immunol
December 2024
Department of Thoracic and Cardiovascular Surgery, Seoul Metropolitan Government-Seoul National University (SMG-SNU) Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
Background: We investigated the effects of C-reactive protein (CRP) deposition on the vessel walls in abdominal aortic aneurysm (AAA) by analyzing spatially resolved changes in gene expression. Our aim was to elucidate the pathways that contribute to disease progression.
Methods: AAA specimens from surgically resected formalin-fixed paraffin-embedded tissues were categorized into the AAA-high CRP [serum CRP ≥ 0.
Ophthalmol Retina
December 2024
F. Hoffmann-La Roche Ltd., Basel, Switzerland.
ACS Appl Mater Interfaces
December 2024
Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, PR China.
The exploration and rational design of high-performance, durable, and non-precious-metal bifunctional oxygen electrocatalysts are highly desired for the large-scale application of overall water splitting. Herein, an effective and straightforward coupling approach was developed to fabricate high-performance bifunctional OER/HER electrocatalysts based on core-shell nanostructure comprising a Ni/NiN core and a NiFe(OH) shell. The as-prepared Ni/NiN@NiFe(OH)-4 catalyst exhibited low overpotentials of 57 and 243 mV at 10 mA cm for the HER and OER in 1.
View Article and Find Full Text PDFMembranes (Basel)
December 2024
LIME Laboratory, CNRS, MADIREL (UMR 7246), Campus St Jérôme, Aix Marseille University, 13013 Marseille, France.
Anion Exchange Membranes (AEMs) are promising materials for electrochemical devices, such as fuel cells and electrolyzers. However, the main drawback of AEMs is their low durability in alkaline operating conditions. A possible solution is the use of composite ionomers containing inorganic fillers stable in a basic environment.
View Article and Find Full Text PDFJ Immunother
December 2024
Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, South Korea.
Dendritic cells (DCs) are specialized immune cells that play a crucial role in presenting antigens and activating cytotoxic T lymphocytes to combat tumors. The immune checkpoint receptor programmed cell death-1 (PD-1) can bind to its ligand programmed cell death-ligand 1 (PD-L1), which is expressed on the surface of cancer cells. This interaction suppresses T-cell activation and promotes immune tolerance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!