DNA -based hydrogels for high-performance optical biosensing application.

Talanta

Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politécnica de Valéncia, Universitat de Valéncia, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Quimica, Universitat Politécnica de Valéncia, Camino de Vera s/n, 46022, Valencia, Spain. Electronic address:

Published: July 2022

Analyte-sensitive DNA-based hydrogels find multiple applications in the field of biosensors due to their adaptable nature. Here, the design of DNA-based hydrogel and its application as sensing platform for the detection of a specific target sequence are presented. DNA-functionalized hydrogel structures were formed via a free radical co-polymerization process. A simple one-step probe immobilization procedure is reported: DNA probe molecules are added to the photoactive polymer mixture, dispensed onto a solid support, or a mold, and covalently attached while the hydrogel is formed through UV light exposure. Such hydrogels can be synthesized with desired recognition ability through the selection of a certain nucleotide sequence. Here we show the application of DNA-based hydrogel to detect the target with high performance in fluorescence microarray format and, additionally, to fabricate holographic surface relief gratings for label-free sensing assays.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2022.123427DOI Listing

Publication Analysis

Top Keywords

dna-based hydrogel
8
dna -based
4
-based hydrogels
4
hydrogels high-performance
4
high-performance optical
4
optical biosensing
4
biosensing application
4
application analyte-sensitive
4
analyte-sensitive dna-based
4
dna-based hydrogels
4

Similar Publications

Emerging approaches for T cell-stimulating platform development.

Cell Syst

December 2024

Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA. Electronic address:

Article Synopsis
  • - T cells are crucial players in the adaptive immune response, targeting pathogens and damaged host cells through a process that involves interaction with antigen-presenting cells.
  • - New biomaterial designs are creating artificial platforms that mimic T cell activation processes, enhancing cell therapies by activating T cells outside the body or providing direct treatment options.
  • - This review discusses innovative strategies in designing T cell-stimulating platforms, focusing on various methods like bead-based systems, hydrogels, DNA systems, and soluble activators to improve cancer therapy.
View Article and Find Full Text PDF

Empowering DNA-Based Information Processing: Computation and Data Storage.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Spectrochemical Analysis and Instrumentation, Ministry of Education, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.

Information processing is a critical topic in the digital age, as silicon-based circuits face unprecedented challenges such as data explosion, immense energy consumption, and approaching physical limits. Deoxyribonucleic acid (DNA), naturally selected as a carrier for storing and using genetic information, possesses unique advantages for information processing, which has given rise to the emerging fields of DNA computing and DNA data storage. To meet the growing practical demands, a wide variety of materials and interfaces have been introduced into DNA information processing technologies, leading to significant advancements.

View Article and Find Full Text PDF

The integration of biomolecules into supramolecular nanostructures forms the basis of the natural world. Naturally occurring liquid-liquid phase separation resulting in biomolecular condensates has inspired the formation of biomolecule-based smart materials with multi-dimensional applications. A non-covalent bio-condensation between biomass DNA and guanosine monophosphate (GMP) has been described, mimicking chromatin folding and creating a unique "all-nucleic" DNA-GMP condensates.

View Article and Find Full Text PDF

Background: Injectable hydrogels are widely used in drug delivery and the repair of irregular tissue defects due to their advantages such as convenient and minimally invasive operation. Although the existing injectable hydrogels have excellent biocompatibility and osteoconduction, they still face clinical challenges such as low osteogenic activity. The key requirements for improved injectable hydrogels as repair materials for non-load bearing bone defects are optimal handling properties, the ability to fill irregular defects and provide osteoinductive stimulation.

View Article and Find Full Text PDF

A Critical View on the Use of DNA Hydrogels in Cell-Free Protein Synthesis.

Angew Chem Int Ed Engl

January 2025

Institute for Biological Interfaces (IBG-1), Karlsruhe Institute of Technology (KIT), 76344, Eggenstein-Leopoldshafen, Germany.

Numerous studies have reported in the past that the use of protein-encoding DNA hydrogels as templates for cell-free protein synthesis (CFPS) leads to better yields than the use of conventional templates such as plasmids or PCR fragments. Systematic investigation of different types of bulk materials from pure DNA hydrogels and DNA hydrogel composites using a commercially available CFPS kit showed no evidence of improved expression efficiency. However, protein-coding DNA hydrogels were advantageously used in microfluidic reactors as immobilized templates for repetitive protein production, suggesting that DNA-based materials offer potential for future developments in high-throughput profiling or rapid in situ characterization of proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!