Recent advances in inorganic functional nanomaterials based flexible electrochemical sensors.

Talanta

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.

Published: July 2022

The flexible electrochemical sensor is a key component of the health monitoring system which can continuously track the physiological signals of the human body, while there is no obvious discomfort and invasiveness. Therefore, it has great potential in personalized medical testing. However, the development of flexible electrochemical sensors currently faces many difficulties, such as the limitations of conductive material properties and manufacturing methods, and the disadvantages of commonly used flexible substrates that are not resistant to high temperatures. In this work, inorganic nanomaterials commonly used to make flexible electrochemical sensors were classified to zero-dimensional (0D) nanomaterials, one-dimensional (1D) nanomaterials, two-dimensional (2D) nanomaterials, and hybrid nanomaterials according to their morphology. The fabrication method of the nanomaterials-based flexible electrochemical sensors was also introduced. Furthermore, the application of flexible electrochemical sensors for chemical and biological sensing and their detection performance were summarized. The detection targets were classified to ion, small molecule, biomacromolecule, and bacteria, respectively.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2022.123419DOI Listing

Publication Analysis

Top Keywords

flexible electrochemical
24
electrochemical sensors
20
commonly flexible
8
flexible
7
nanomaterials
6
electrochemical
6
sensors
5
advances inorganic
4
inorganic functional
4
functional nanomaterials
4

Similar Publications

Water electrolysis recognizes nickel foam (NF) as an effective current collector due to its excellent conductivity. However, recent studies highlighted NF's effect on the efficacy of various electrocatalytic reactions, primarily due to the presence of electroactive chemical species at its interface. In contrast, numerous reports suggested that NF has a negligible impact on overall electrocatalytic activity.

View Article and Find Full Text PDF

Patterning Planar, Flexible Li-S Battery Full Cells on Laser-Induced Graphene Traces.

Nanomaterials (Basel)

December 2024

Quantum Nano Centre, Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

Laser conversion of commercial polymers to laser-induced graphene (LIG) using inexpensive and accessible CO lasers has enabled the rapid prototyping of promising electronic and electrochemical devices. Frequently used to pattern interdigitated supercapacitors, few approaches have been developed to pattern batteries-in particular, full cells. Herein, we report an LIG-based approach to a planar, interdigitated Li-S battery.

View Article and Find Full Text PDF

MOF-derived Carbon-Based Materials for Energy-Related Applications.

Adv Mater

January 2025

State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.

New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs.

View Article and Find Full Text PDF

Flexible disk ultramicroelectrode: Facile preparation and high-resolution scanning electrochemical microscopy imaging.

Anal Chim Acta

January 2025

State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China. Electronic address:

Background: Scanning electrochemical microscopy (SECM) is a kind of scanning probe technology that enables the obtainment of surface morphology and electrochemical information by recording changes in Faraday current triggered by the movement of probe.

Results: In this work, flexible disk ultramicroelectrode (UME) with highly repeatable geometry are fabricated through a simple and universal strategy that involves vacuum pulling the glass capillaries inserted with platinum wire (gold wire, carbon fiber, etc.), followed by a rapidly heated sealing and polishing process.

View Article and Find Full Text PDF

Solar-Driven Thermally Regenerative Electrochemical Cells for Continuous Power Generation with Coupled Optical and Thermal Integration.

ACS Appl Mater Interfaces

January 2025

Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.

This study presents the development of a solar-driven thermally regenerative electrochemical cell (STREC) for continuous power generation. Key innovations include dual-function carbon-based electrodes for efficient solar absorption and electrochemical reactions, a transparent and ultrainsulating silica aerogel to maximize solar spectrum transmission while minimizing heat loss, and a compact heat exchanger to recover heat from hot cell streams. Under 1 sun conditions, the STREC achieves a power density of 912.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!