The interpretation of mixtures containing related individuals can be difficult due to allele sharing between the contributors. Challenges include the assignment of the number of contributors (NoC) to the mixture with the under assignment of NoC resulting in false exclusions of true donors. Non-donating relatives of the true contributors to mixtures of close relatives can result in likelihood ratios supporting their adventitious inclusion within the mixture. We examine the effect of non-donor likelihood ratios on mixtures of first order relatives. Mixtures of full siblings and parent-child were created by mixing the DNA from known family members in vitro, or by in silico simulation. Mixtures were interpreted using the probabilistic genotyping software STRmix™ and likelihood ratios were assigned for the true donors and non-donors who were either further relatives of the true donors or unrelated to the true donors. The two donor balanced mixtures deconvoluted straightforwardly when analysed as NoC = 2 giving approximately the experimental design 1:1 ratio. When analysed as NoC = 3 a very large number of non-donor genotypes produced LRs close to 1 including many instances of adventitious support. The in vitro three donor balanced mixtures proved difficult to assign as NoC = 3 by a blind examination of the profile. It is likely that many of these would be misassigned as NoC = 2. The analysis of the in vitro and in silico mixtures assuming NoC = 3 with no use of a conditioning profile or with the use of a conditioning profile but without informed priors on the mixture proportions (Mx priors) was ineffective. If the profile can be assigned as NoC = 3 then assignment of the Mx priors is straightforward. This analysis gave no false exclusions. Adventitious support did happen for relatives with high allele sharing. Adventitious support was not observed for any unrelated non-donors. The analysis of the three-person mixtures as NoC = 2 produced many false exclusions and fewer instances of adventitious support. The three donor unbalanced mixtures could all be assigned as NoC= 3. Analysis without Mx priors produced an alternate genotype explanation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsigen.2022.102691 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!