Glycolipid, ganglio-N-tetraosylceramide (asialo-GM1), on the mammalian cells are known to be recognized by type IV pili of Pseudomonas aeruginosa. In this work, we show that asialo-GM1 can also be recognized by Lectin A (LecA), another adhesin protein of the P. aeruginosa, by a fluorescent polarization assay, a label-free bacterial motility enabled binding assay, and bacterial mutant studies. On hydrated semi-solid gel surfaces, asialo-GM1 enables swarming and twitching motilities, while on solid surfaces facilitates the bacterial adherence of P. aeruginosa. These results indicate that asialo-GM1 can modulate bioactivities, adherence, and motilities, that are controlled by opposite signaling pathways. We demonstrate that when a solution of pilin monomers or LecA proteins are spread on hydrated gel surfaces, the asialo-GM1 mediated swarming motility is inhibited. Treatment of artificial liposomes containing asialo-GM1 as a component of lipid bilayer with pilin monomers or LecA proteins caused transient leakage of encapsulated dye from liposomes. These results suggest that pili and LecA proteins not only bind to asialo-GM1 but can also cause asialo-GM1 mediated leakage. We also show that both pili and LecA mutants of P. aeruginosa adhere to asialo-GM1 coated solid surfaces, and that a class of synthetic ligands for pili and LecA inhibits both pili and LecA-mediated adherence of P. aeruginosa on asialo-GM1-coated surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2022.112478 | DOI Listing |
Regulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs).
View Article and Find Full Text PDFJ Biol Chem
December 2024
Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany.
Bacteria frequently employ carbohydrate-binding proteins, so-called lectins, to colonize and persist in a host. Thus, bacterial lectins are attractive targets for the development of new antiinfectives. To find new potential targets for antiinfectives against pathogenic bacteria, we searched for homologs of Pseudomonas aeruginosa lectins and identified homologs of LecA in Enterobacter species.
View Article and Find Full Text PDFJACS Au
December 2024
Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken D-66123, Germany.
is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for infections are available.
View Article and Find Full Text PDFGenes Genet Syst
December 2024
Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University.
Nucleosomes are complexes of DNA and histone proteins that form the basis of eukaryotic chromatin. Eukaryotic histones are descended from Archaean homologs; however, how this occurred remains unclear. Our previous genetic analysis on the budding yeast nucleosome identified 26 histone residues conserved between S.
View Article and Find Full Text PDFMult Scler Relat Disord
December 2024
Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!