AI Article Synopsis

  • Glycolipid asialo-GM1 on mammalian cells is recognized by both type IV pili and Lectin A (LecA) proteins of Pseudomonas aeruginosa, impacting bacterial motility and adherence.
  • Research shows that asialo-GM1 enhances swarming and twitching on gel surfaces while promoting adherence on solid surfaces, indicating its role in modulating bacterial activities through different signaling pathways.
  • Treatment with pili or LecA proteins can inhibit asialo-GM1 mediated swarming and cause leakage from liposomes, suggesting a complex interaction that affects bacterial adherence and motility.

Article Abstract

Glycolipid, ganglio-N-tetraosylceramide (asialo-GM1), on the mammalian cells are known to be recognized by type IV pili of Pseudomonas aeruginosa. In this work, we show that asialo-GM1 can also be recognized by Lectin A (LecA), another adhesin protein of the P. aeruginosa, by a fluorescent polarization assay, a label-free bacterial motility enabled binding assay, and bacterial mutant studies. On hydrated semi-solid gel surfaces, asialo-GM1 enables swarming and twitching motilities, while on solid surfaces facilitates the bacterial adherence of P. aeruginosa. These results indicate that asialo-GM1 can modulate bioactivities, adherence, and motilities, that are controlled by opposite signaling pathways. We demonstrate that when a solution of pilin monomers or LecA proteins are spread on hydrated gel surfaces, the asialo-GM1 mediated swarming motility is inhibited. Treatment of artificial liposomes containing asialo-GM1 as a component of lipid bilayer with pilin monomers or LecA proteins caused transient leakage of encapsulated dye from liposomes. These results suggest that pili and LecA proteins not only bind to asialo-GM1 but can also cause asialo-GM1 mediated leakage. We also show that both pili and LecA mutants of P. aeruginosa adhere to asialo-GM1 coated solid surfaces, and that a class of synthetic ligands for pili and LecA inhibits both pili and LecA-mediated adherence of P. aeruginosa on asialo-GM1-coated surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2022.112478DOI Listing

Publication Analysis

Top Keywords

leca proteins
12
pili leca
12
asialo-gm1
10
swarming motility
8
pseudomonas aeruginosa
8
gel surfaces
8
surfaces asialo-gm1
8
solid surfaces
8
adherence aeruginosa
8
pilin monomers
8

Similar Publications

Regulation of gene expression helps determine various phenotypes in most cellular life forms. It is orchestrated at different levels and at the point of transcription initiation by transcription factors (TFs). TFs bind to DNA through domains that are evolutionarily related, by shared membership of the same superfamilies (TF-SFs), to those found in other nucleic acid binding and protein-binding functions (nTFs for non-TFs).

View Article and Find Full Text PDF

A fucose-binding superlectin from Enterobacter cloacae with high Lewis and ABO blood group antigen specificity.

J Biol Chem

December 2024

Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, D-66123 Saarbrücken, Germany; Deutsches Zentrum für Infektionsforschung (DZIF), Standort Hannover-Braunschweig; Department of Chemistry, PharmaScienceHub (PSH), Saarland University, D-66123 Saarbrücken, Germany.

Bacteria frequently employ carbohydrate-binding proteins, so-called lectins, to colonize and persist in a host. Thus, bacterial lectins are attractive targets for the development of new antiinfectives. To find new potential targets for antiinfectives against pathogenic bacteria, we searched for homologs of Pseudomonas aeruginosa lectins and identified homologs of LecA in Enterobacter species.

View Article and Find Full Text PDF

High-Affinity Lectin Ligands Enable the Detection of Pathogenic Biofilms: Implications for Diagnostics and Therapy.

JACS Au

December 2024

Chemical Biology of Carbohydrates (CBCH), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarbrücken D-66123, Germany.

is a critical priority pathogen and causes life-threatening acute and biofilm-associated chronic infections. The choice of suitable treatment for complicated infections requires lengthy culturing for species identification from swabs or an invasive biopsy. To date, no fast, pathogen-specific diagnostic tools for infections are available.

View Article and Find Full Text PDF

A hypothesis of nucleosome evolution considering mutational analysis.

Genes Genet Syst

December 2024

Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University.

Nucleosomes are complexes of DNA and histone proteins that form the basis of eukaryotic chromatin. Eukaryotic histones are descended from Archaean homologs; however, how this occurred remains unclear. Our previous genetic analysis on the budding yeast nucleosome identified 26 histone residues conserved between S.

View Article and Find Full Text PDF
Article Synopsis
  • MOGAD encephalitis and ADEM present similar symptoms to autoimmune encephalitis (AE) linked with anti-neuronal antibodies, but their treatment and outcomes vary, and testing for anti-MOG antibodies is not routine.
  • In a study of 481 patients with suspected AE, only 3.5% had anti-MOG antibodies, with a higher prevalence in children compared to adults.
  • Patients with MOGAD exhibited fewer behavioral and movement disorders compared to those with AE, but had more symptoms related to demyelination, highlighting the need to consider MOGAD as a differential diagnosis in cases of possible AE.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!