In rodent models, conditioning with acute footshock (AFS) has been demonstrated to produce bladder hypersensitivity which is more robust when rats, tested as adults, had also been pretreated with neonatal bladder inflammation (NBI). The spinal neurochemical mechanisms of pro-nociceptive processes in rats pretreated with NBI are not fully known and so the present study administered intrathecal (IT) opioid (naloxone) and NMDA receptor (MK-801) antagonists to determine whether these receptors' actions had been altered by NBI. Female Sprague-Dawley rat pups were intravesically pretreated on postnatal days P14-P16 with a 1% zymosan solution or with control procedures and then raised to adulthood (12-15 weeks of age). Bladder hypersensitivity was induced through use of an AFS paradigm. Visceromotor responses (VMRs; abdominal muscle contractions) to graded, air pressure-controlled urinary bladder distension were used as nociceptive endpoints. Immediately following AFS pretreatments, rats were anesthetized and surgically prepared. Pharmacological antagonists were administered via an IT catheter onto the lumbosacral spinal cord and VMRs determined 15 min later. Administration of IT naloxone hydrochloride (10 μg) to rats which had been pretreated only with AFS resulted in VMRs that were more robust than VMRs in similarly pretreated rats that received IT normal saline. In contrast, IT naloxone had no significant effect on rats that had been pretreated with both NBI&AFS, although MK-801 was inhibitory. These effects of IT naloxone suggest the presence of inhibitory influences in normal rats that are absent in rats pretreated with NBI. Absence of inhibitory influences produced by AFS was also demonstrated in rats pretreated with NBI&AFS using measures of thermal paw withdrawal latency (PWL): rats pretreated with only AFS had longer PWLs than rats pretreated with both NBI&AFS. Together, a reduction in anti-nociceptive mechanisms coupled with pro-nociceptive NMDA-linked mechanisms results in more robust nociceptive responses to distension in rats which had experienced NBI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9018594PMC
http://dx.doi.org/10.1016/j.neulet.2022.136617DOI Listing

Publication Analysis

Top Keywords

rats pretreated
28
rats
13
pretreated nbi&afs
12
pretreated
10
afs demonstrated
8
bladder hypersensitivity
8
pretreated nbi
8
pretreated afs
8
inhibitory influences
8
afs
6

Similar Publications

Gentisic acid protects Sprague-Dawley rats from myocardial infarction through reversing electrocardiographical, biochemical and histopathological abnormalities.

Biochem Biophys Res Commun

January 2025

Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Tobe Camp, Abbottabad, 22060, KPK, Pakistan. Electronic address:

Gentisic acid (GA), a cytochrome P450 metabolite of the antiplatelet drug aspirin, exhibits smooth muscle relaxant, antiatherogenic, and antioxidant activities. It also has a protective role in hypertrophic heart failure, suggesting its role in the management of myocardial infarction (MI). This study aimed to explore the protective activity of GA in isoproterenol (ISO)-induced MI in Sprague-Dawley (SD) rats in-vivo, followed by mechanistic investigation ex-vivo.

View Article and Find Full Text PDF

Nimodipine is the current gold standard in the treatment of subarachnoid hemorrhage, as it is the only known calcium channel blocker that has been proven to improve neurological outcomes. In addition, nimodipine exhibits neuroprotective properties in vitro under various stress conditions. Furthermore, clinical studies have demonstrated a neuroprotective effect of nimodipine after vestibular schwannoma surgery.

View Article and Find Full Text PDF

The approaches to correct thyroid deficiency include replacement therapy with thyroid hormones (THs), but such therapy causes a number of side effects. A possible alternative is thyroid-stimulating hormone (TSH) receptor activators, including allosteric agonists. The aim of this work was to study the effect of ethyl-2-(4-(4-(5-amino-6-(-butylcarbamoyl)-2-(methylthio)thieno[2,3-d]pyrimidin-4-yl)phenyl)--1,2,3-triazol-1-yl) acetate (TPY3m), a TSH receptor allosteric agonist developed by us, on basal and thyroliberin (TRH)-stimulated TH levels and the hypothalamic-pituitary-thyroid (HPT) axis in male rats with high-fat diet/low-dose streptozotocin-induced type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

The amphibian skin secretions are excellent sources of bioactive peptides, some of which and their derivatives exhibit multiple properties, including antibacterial and antagonism against bradykinin. A novel peptide Senegalin-2 was isolated from the skin secretions of frog. Senegalin-2 relaxed rat bladder smooth muscle (EC 17.

View Article and Find Full Text PDF

Radiotherapy (RTx) is a highly effective treatment for head and neck cancer that can cause concurrent damage to surrounding healthy tissues. In cases of nasopharyngeal carcinoma (NPC), the auditory apparatus is inevitably exposed to radiation fields and sustains considerable damage, resulting in dysfunction. To date, little research has been conducted on the changes induced by RTx in the middle ear and the underlying mechanisms involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!