Evaluation of the immediate effects of a single transcranial direct current stimulation session on astrocyte activation, inflammatory response, and pain threshold in naïve rats.

Behav Brain Res

Postgraduate Program in Dentistry, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, RS, Brazil; Neuroscience Graduate Program, UFRGS, Porto Alegre, RS, Brazil; Pharmacology Graduate Program, UFRGS, Porto Alegre, RS, Brazil. Electronic address:

Published: June 2022

Transcranial direct current stimulation (tDCS) has demonstrated clinical benefits such as analgesia, anti-inflammatory, and neuroprotective effects. However, the mechanisms of action of a single tDCS session are poorly characterized. The present study aimed to evaluate the effects of a single tDCS session on pain sensitivity, inflammatory parameters, and astrocyte activity in naive rats. In the first experiment, sixty-day-old male Wistar rats (n = 95) were tested for mechanical pain threshold (von Frey test). Afterward, animals were submitted to a single bimodal tDCS (0.5 mA, 20 min) or sham-tDCS session. According to the group, animals were re-tested at different time intervals (30, 60, 120 min, or 24 h) after the intervention, euthanized, and the cerebral cortex collected for biochemical analysis. A second experiment (n = 16) was performed using a similar protocol to test the hypotheses that S100B levels in the cerebrospinal fluid (CSF) are altered by tDCS. Elisa assay quantified the levels of tumor necrosis factor-alfa (TNF-α), interleukin-10 (IL10), S100 calcium-binding protein B (S100B), and Glial fibrillary acidic protein (GFAP). Data were analyzed using ANOVA and independent t-test (P < 0.05). Results showed that tDCS decreased pain sensitivity (30 and 60 min), cerebral TNF-α and S100B levels (30 min). CSF S100B levels increased 30 min after intervention. There were no differences in IL10 and GFAP levels. TCDS showed analgesic, anti-inflammatory, and neuroprotective effects in naive animals. Therefore, this non-invasive and inexpensive therapy may potentially be a preemptive alternative to reduce pain, inflammation, and neurodegeneration in situations where patients will undergo medical procedures (e.g., surgery).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2022.113880DOI Listing

Publication Analysis

Top Keywords

effects single
8
transcranial direct
8
direct current
8
current stimulation
8
pain threshold
8
single tdcs
8
tdcs session
8
tdcs
5
evaluation effects
4
single
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!