Information in the brain is represented by the collective and coordinated activity of single neurons. Activity is determined by a large amount of dynamic synaptic inputs from neurons in the same and/or distant brain regions. Therefore, the simultaneous recording of single neurons across several brain regions is critical for revealing the interactions among neurons that reflect the computational principles of the brain. Recently, several wide-field two-photon (2P) microscopes equipped with sizeable objective lenses have been reported. These microscopes enable large-scale in vivo calcium imaging and have the potential to make a significant contribution to the elucidation of information-processing mechanisms in the cerebral cortex. This review discusses recent reports on wide-field 2P microscopes and describes the trade-offs encountered in developing wide-field 2P microscopes. Large-scale imaging of neural activity allows us to test hypotheses proposed in theoretical neuroscience, and to identify rare but influential neurons that have potentially significant impacts on the whole-brain system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neures.2022.03.010DOI Listing

Publication Analysis

Top Keywords

wide-field two-photon
8
two-photon microscopes
8
computational principles
8
principles brain
8
single neurons
8
brain regions
8
wide-field microscopes
8
microscopes
5
brain
5
neurons
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!