Tiling patterns are observed in many biological structures. The compound eye is an interesting example of tiling and is often constructed by hexagonal arrays of ommatidia, the optical unit of the compound eye. Hexagonal tiling may be common due to mechanical restrictions such as structural robustness, minimal boundary length, and space-filling efficiency. However, some insects exhibit tetragonal facets. Some aquatic crustaceans, such as shrimp and lobsters, have evolved with tetragonal facets. Mantis shrimp is an insightful example as its compound eye has a tetragonal midband region sandwiched between hexagonal hemispheres. This casts doubt on the naive explanation that hexagonal tiles recur in nature because of their mechanical stability. Similarly, tetragonal tiling patterns are also observed in some Drosophila small-eye mutants, whereas the wild-type eyes are hexagonal, suggesting that the ommatidial tiling is not simply explained by such mechanical restrictions. If so, how are the hexagonal and tetragonal patterns controlled during development? Here, we demonstrate that geometrical tessellation determines the ommatidial tiling patterns. In small-eye mutants, the hexagonal pattern is transformed into a tetragonal pattern as the relative positions of neighboring ommatidia are stretched along the dorsal-ventral axis. We propose that the regular distribution of ommatidia and their uniform growth collectively play an essential role in the establishment of tetragonal and hexagonal tiling patterns in compound eyes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2022.03.046 | DOI Listing |
Arch Virol
January 2025
Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur-Bahía Blanca, Buenos Aires, Argentina.
Neurodegenerative pathologies such as age-related macular degeneration currently have no cure or effective treatment. In this type of disease, the presence of amyloid-β peptides, oxidative stress, and inflammation trigger dysregulation of retinal pigment epithelial cells and progression toward the death of these cells, resulting in a loss of vision. The production of amyloid-β peptides, oxidative stress, and inflammation can be triggered in response to viral infections.
View Article and Find Full Text PDFClin Genet
January 2025
Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Inherited retinal diseases (IRDs) may have significant diagnostic challenges due to their genetic complexity and diverse inheritance patterns. Advanced genotyping tools like exome sequencing (ES) offer promising opportunities for identifying causative variants and improving disease management. This retrospective study was aimed to present prevalent pathogenic and novel variants in patients diagnosed with IRDs using ES.
View Article and Find Full Text PDFRecent Pat Anticancer Drug Discov
January 2025
Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, PR China.
Background: Lysyl oxidase-like 2 (LOXL2) is a metalloenzyme that catalyzes oxidative deamination ε-amino group of lysine. It has been found that LOXL2 is a promotor for the metastasis and invasion in kinds of tumors. Previous studies show that disulfide bonds are important components in LOXL2, and their bioactivity can be regulated by those bonds.
View Article and Find Full Text PDFBiol Pharm Bull
January 2025
Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
As unexpected adverse events and successful drug repositioning have shown, drug effects are complex and include aspects not recognized by developers. How can we understand these unrecognized drug effects? Drug effects can be numerized by encompassing biological responses to drugs. For instance, the transcriptome data of cultured cells and toxicopathological images of mice treated with a compound represent the effects of the compound in vitro and in vivo, respectively.
View Article and Find Full Text PDFAngiogenesis
January 2025
Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA.
Reduction-oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!