We report on the fluorescence properties of a new class of emissive and stable π-radicals that contain a boron atom at a position distant from the radical center. A fully planarized derivative exhibited an intense red fluorescence with high fluorescence quantum yields (Φ >0.67) even in polar solvents. To elucidate the origin of this phenomenon, we synthesized another boron-stabilized radical that contains a bulky aryl group on the boron atom. A comparison of these derivatives, as well as with conventional donor-π-acceptor (D-π-A)-type emissive π-radicals, unveiled several characteristic features in their photophysical properties. A theoretical analysis revealed that the SOMO-LUMO electronic transition generates an emissive D state. Unlike conventional D-π-A-type π-radicals, this state does not undergo significant structural relaxation. The boron-stabilized π-radicals demonstrated promising potential for organic light-emitting diodes as an emitting material.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202201965 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!