Purpose: This study aimed to identify associations between dorsiflexion range of motion (DFROM), functional hop test performance, and hopping biomechanics with the magnitude of talar cartilage deformation after a standardized hopping protocol in individuals with and without chronic ankle instability (CAI).

Methods: Thirty CAI and 30 healthy individuals participated. Ankle DFROM was assessed using the weight-bearing lunge test. Four different functional hop tests were assessed. Three-dimensional kinematics and kinetics were sampled during a 60-cm single-leg hop. We calculated cartilage deformation after a dynamic loading protocol consisting of sixty 60-cm single-leg forward hops by assessing the change in average thickness for the overall, medial, and lateral talar cartilage. Linear regressions examined the associations between cartilage deformation magnitude and DFROM, functional hop tests, and hop biomechanical variables after accounting for body weight and time since the initial ankle sprain.

Results: In CAI group, lesser static DFROM (ΔR2 = 0.22) and smaller peak ankle dorsiflexion angle (ΔR2 = 0.17) was associated with greater medial deformation. Greater peak vertical ground reaction force (vGRF) (ΔR2 = 0.26-0.28) was associated with greater medial and overall deformation. Greater vGRF loading rate (ΔR2 = 0.23-0.35) was associated with greater lateral and overall deformation. Greater side hop test times (ΔR2 = 0.31-0.36) and ankle plantarflexion at initial contact (ΔR2 = 0.23-0.38) were associated with greater medial, lateral, and overall deformation. In the control group, lesser side hop test times (ΔR2 = 0.14), greater crossover hop distances (ΔR2 = 0.14), and greater single-hop distances (ΔR2 = 0.21) were associated with greater overall deformation.

Conclusions: Our results indicate that lesser static DFROM, poorer functional hop test performance, and hop biomechanics associate with greater talar cartilage deformation after a dynamic loading protocol in those with CAI. These factors may represent targets for therapeutic interventions within this population to slow ankle posttraumatic osteoarthritis progression.

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0000000000002902DOI Listing

Publication Analysis

Top Keywords

cartilage deformation
20
associated greater
20
talar cartilage
16
functional hop
16
hop test
16
greater
12
greater medial
12
deformation greater
12
hop
10
deformation
9

Similar Publications

Background: The accurate diagnosis of degenerative joint diseases (DJDs) of the temporomandibular joint (TMJ) presents a significant clinical challenge due to their progressive nature and the complexity of associated structural changes. These conditions, characterized by cartilage degradation, subchondral bone remodeling, and eventual joint dysfunction, necessitate reliable and efficient imaging techniques for early detection and effective management. Cone-beam computed tomography (CBCT) is widely regarded as the gold standard for evaluating osseous changes in the TMJ, offering detailed visualization of bony structures.

View Article and Find Full Text PDF

Characterization of metalaxyl-induced notochord toxicity based on biochemical and transcriptomics in zebrafish (Danio rerio) model.

J Hazard Mater

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine,Translational Research Institute of Brain and Brain-Like Intelligence, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Institute of Medical Genetics, Department of Big Data in Health Science School of Public Health and General Practice Medicine, Tongji University School of Medicine, Tongji University, Shanghai 200331, China. Electronic address:

Metalaxyl is an acylanilide systemic fungicide that is widely applied and can readily enter ecosystems through leaching and soil runoff. This research utilized zebrafish as a model organism to thoroughly investigate the detrimental impacts of environmentally relevant levels of metalaxyl on the development of the notochord in zebrafish embryos and to elucidate the underlying molecular mechanisms through transcriptomics, pharmacological intervention and molecular biological detection. The preliminary results demonstrated that metalaxyl induced significant modifications in the developmental parameters of zebrafish embryos.

View Article and Find Full Text PDF

Single-Cell RNA sequencing reveals mitochondrial dysfunction in microtia chondrocytes.

Sci Rep

January 2025

Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Microtia is a congenital malformation characterized by underdevelopment of the external ear. While chondrocyte dysfunction has been implicated in microtia, the specific cellular abnormalities remain poorly understood. This study aimed to investigate mitochondrial dysfunction in microtia chondrocytes using single-cell RNA sequencing.

View Article and Find Full Text PDF

Although the pathogenesis and mechanism of congenital skeletal dysplasia are better understood, progress in drug development and intervention research remains limited. Here we report that melatonin treatment elicits a mitigating effect on skeletal abnormalities caused by deficiency. In addition to our previous finding of endoplasmic reticulum stress upon deficiency, we found calcium (Ca) overload jointly contributed to -associated chondrodysplasias.

View Article and Find Full Text PDF

Anisotropic Nanofluidic Ionic Skin for Pressure-Independent Thermosensing.

ACS Nano

January 2025

College of Polymer Science and Engineering, Sichuan University, State Key Laboratory of Polymer Materials Engineering, Chengdu 610065 Sichuan, China.

Ionic skin can mimic human skin to sense both temperature and pressure simultaneously. However, a significant challenge remains in creating precise ionic skins resistant to external stimuli interference when subjected to pressure. In this study, we present an innovative approach to address this challenge by introducing a highly anisotropic nanofluidic ionic skin (ANIS) composed of carboxylated cellulose nanofibril (CNF)-reinforced poly(vinyl alcohol) (PVA) nanofibrillar network achieved through a straightforward one-step hot drawing method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!