The cortical evoked potential corresponds with deep brain stimulation efficacy in rats.

J Neurophysiol

Department of Biomedical Engineering, Duke University, Durham, North Carolina.

Published: May 2022

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) antidromically activates the motor cortex (M1), and this cortical activation appears to play a role in the treatment of hypokinetic motor behaviors (Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. 324: 354-359, 2009; Yu C, Cassar IR, Sambangi J, Grill WM. 40: 4323-4334, 2020). The synchronous antidromic activation takes the form of a short-latency cortical evoked potential (cEP) in electrocorticography (ECoG) recordings of M1. We assessed the utility of the cEP as a biomarker for STN DBS in unilateral 6-hydroxydopamine-lesioned female Sprague Dawley rats, with stimulating electrodes implanted in the STN and the ECoG recorded above M1. We quantified the correlations of the cEP magnitude and latency with changes in motor behavior from DBS and compared them to the correlation between motor behaviors and several commonly used spectral-based biomarkers. The cEP features correlated strongly with motor behaviors and were highly consistent across animals, whereas the spectral biomarkers correlated weakly with motor behaviors and were highly variable across animals. The cEP may thus be a useful biomarker for assessing the therapeutic efficacy of DBS parameters, as its features strongly correlate with motor behavior, it is consistent across time and subjects, it can be recorded under anesthesia, and it is simple to quantify with a large signal-to-noise ratio, enabling rapid, real-time evaluation. Additionally, our work provides further evidence that antidromic cortical activation mediates changes in motor behavior from STN DBS and that the dependence of DBS efficacy on stimulation frequency may be related to antidromic spike failure. We characterize a new potential biomarker for deep brain stimulation (DBS), the cortical evoked potential (cEP), and demonstrate that it exhibits a robust correlation with motor behaviors as a function of stimulation frequency. The cEP may thus be a useful clinical biomarker for changes in motor behavior. This work also provides insight into the cortical mechanisms of DBS, suggesting that motor behaviors are strongly affected by the rate of antidromic spike failure during DBS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9054265PMC
http://dx.doi.org/10.1152/jn.00353.2021DOI Listing

Publication Analysis

Top Keywords

motor behaviors
24
motor behavior
16
cortical evoked
12
evoked potential
12
deep brain
12
brain stimulation
12
changes motor
12
motor
11
dbs
9
stimulation dbs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!