Emotional expressions are a language of social interaction. Guided by recent advances in the study of expression and intersectionality, the present investigation examined how gender, ethnicity, and social class influence the signaling and recognition of 34 states in dynamic full-body expressive behavior. One hundred fifty-five Asian, Latinx, and European Americans expressed 34 emotional states with their full bodies. We then gathered 22,174 individual ratings of these expressions. In keeping with recent studies, people can recognize up to 29 full-body multimodal expressions of emotion. Neither gender nor ethnicity influenced the signaling or recognition of emotion, contrary to hypothesis. Social class, however, did have an influence: in keeping with past studies, lower class individuals proved to be more reliable signalers of emotion, and more reliable judges of full body expressions of emotion. Discussion focused on intersectionality and emotion. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

Download full-text PDF

Source
http://dx.doi.org/10.1037/emo0001082DOI Listing

Publication Analysis

Top Keywords

signaling recognition
12
gender ethnicity
12
social class
12
intersectionality emotion
8
ethnicity social
8
class influence
8
keeping studies
8
expressions emotion
8
emotion
5
emotion signaling
4

Similar Publications

Purpose Of Review: The purpose of this review is to summarize the current understanding of cell-autonomous innate immune pathways that contribute to bone homeostasis and disease.

Recent Findings: Germ-line encoded pattern recognition receptors (PRRs) are the first line of defense against danger and infections. In the bone microenvironment, PRRs and downstream signaling pathways, that mount immune defense, interface intimately with the core cellular processes in bone cells to alter bone formation and resorption.

View Article and Find Full Text PDF

Continuous and reagentless biomolecular detection technologies are bringing an evolutionary influence on disease diagnostics and treatment. Aptamers are attractive as specific recognition probes because they are capable of regeneration without washing. Unfortunately, the affinity and dissociation kinetics of the aptamers developed to date show an inverse relationship, preventing continuous and reagentless detection of protein targets due to their low dissociation rates.

View Article and Find Full Text PDF

Anti-SRP myositis: a diagnostic and therapeutic challenge.

Turk J Pediatr

December 2024

Division of Pediatric Rheumatology, Department of Pediatrics, University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Türkiye.

Background: Anti-signal recognition protein (anti-SRP) myopathy is a rare idiopathic inflammatory myopathy in children. Herein, a 3-year-old patient with severe anti-SRP myopathy showing a rapidly progressive disease course is presented in order to increase the awareness of pediatricians about idiopathic inflammatory myopathies.

Case Presentation: A previously healthy 3-year-old girl presented with progressive symmetrical proximal muscle weakness that caused difficulty in climbing stairs for two months prior to evaluation, and a marked elevation of the serum creatine kinase levels.

View Article and Find Full Text PDF

Serum Exosomes miR-122-5P Induces Hepatic and Renal Injury in Septic Rats by Regulating TAK1/SIRT1 Pathway.

Infect Drug Resist

January 2025

Department of Critical Care Medicine, Lanzhou University Second Hospital, Lanzhou University, Lanzhou City, Gansu Province, People's Republic of China.

Aim: Sepsis is a potentially fatal condition characterized by organ failure resulting from an abnormal host response to infection, often leading to liver and kidney damage. Timely recognition and intervention of these dysfunctions have the potential to significantly reduce sepsis mortality rates. Recent studies have emphasized the critical role of serum exosomes and their miRNA content in mediating sepsis-induced organ dysfunction.

View Article and Find Full Text PDF

Application trends of hydrogen-generating nanomaterials for the treatment of ROS-related diseases.

Biomater Sci

January 2025

Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.

Reactive oxygen species (ROS) play essential roles in both physiological and pathological processes. Under physiological conditions, appropriate amounts of ROS play an important role in signaling and regulation in cells. However, too much ROS can lead to many health problems, including inflammation, cancer, delayed wound healing, neurodegenerative diseases (such as Parkinson's disease and Alzheimer's disease), and autoimmune diseases, and oxidative stress from excess ROS is also one of the most critical factors in the pathogenesis of cardiovascular and metabolic diseases such as atherosclerosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!