Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this work, a novel "foaming" strategy uses sodium bicarbonate (NaHCO) and ammonium oxalate ((NH)CO) as the foaming agent, turning biomass-derived carboxymethyl cellulose (CMC) into N-doped porous carbon. Highly active palladium nanoparticles (Pd NPs) immobilized on nitrogen-doped porous carbon (Pd@MC(2)-P) are produced through a phosphate-mediation approach. The phosphoric acid (HPO) becomes the key to the synthesis of highly dispersed ultrafine Pd NPs on active Pd-cluster-edge (the edge of the Pd-cluster-100 and Pd-cluster-111 surfaces). The Pd@MC(2)-P exhibits high activity for formic acid (FA) dehydrogenation with an initial TOF of 971 h at room temperature. The subsequent hydrogenation of phenol using FA as an in situ hydrogen source on Pd@MC(2)-P and the highly efficient hydrogenation of phenol to cyclohexanone reaches more than 90% selectivity and 80% conversion. Density functional theory (DFT) calculations reveal that the reduced H poisoning and more exposed (100) surface over Pd nanoparticles are the keys to the Pd nanoparticles' high activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c00343 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!