A multifunctional 3D dressing unit based on the core-shell hydrogel microfiber for diabetic foot wound healing.

Biomater Sci

Guangdong-Hong Kong Joint Laboratory for New Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen, 529020, China.

Published: May 2022

The healing mechanism of diabetic foot wounds is very complicated, and it is difficult for a single-function medical dressing to achieve good therapeutic effects. We propose a simple coaxial biological 3D printing technology, which uses one-step 3D deposition to continuously produce multifunctional medical dressings on the basis of core-shell hydrogel fibers. These dressings have good biocompatibility, controlled drug-release performance, excellent water absorption and retention, and antibacterial and anti-inflammatory functions. experiments with type 2 diabetic rats were performed over a 14-day period to compare the performance of the multifunctional 3D dressing with a gauze control; the multifunctional 3D dressing reduced inflammation, effectively increased the post-healing thickness of granulation tissue, and promoted the formation of blood vessels, hair follicles, and highly oriented collagen fiber networks. Therefore, the proposed multifunctional dressing is expected to be suitable for clinical applications for healing diabetic foot wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2bm00029fDOI Listing

Publication Analysis

Top Keywords

multifunctional dressing
16
diabetic foot
12
core-shell hydrogel
8
foot wounds
8
multifunctional
5
dressing unit
4
unit based
4
based core-shell
4
hydrogel microfiber
4
diabetic
4

Similar Publications

An antibacterial, antioxidant and hemostatic hydrogel accelerates infectious wound healing.

J Nanobiotechnology

January 2025

Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.

Hydrogel drug-delivery system that can effectively load antibacterial drugs, realize the in-situ drug release in the microenvironment of wound infection to promote wound healing. In this study, a multifunctional hydrogel drug delivery system (HA@TA-Okra) was constructed through the integration of hyaluronic acid methacrylate (HAMA) matrix with tannic acid (TA) and okra extract. The composition and structural characteristics of HA@TA-Okra system and its unique advantages in the treatment of diverse wounds were systematically evaluated.

View Article and Find Full Text PDF

Boric acid-substituted phthalocyanine/ciprofloxacin co-assembled nanoparticles for constructing bacteria-responsive intelligent wound dressings with synergistic therapy and recognition of bacterial infections.

Int J Biol Macromol

January 2025

Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Department of Rehabilitation Medicine, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, Shandong 266000, China. Electronic address:

In contemporary times, the waning effectiveness of antibiotics against bacterial infections is progressively giving rise to significant concerns in public health. Although photodynamic technology possesses a potent ability to deactivate bacteria, its non-selective attack on normal cells poses potential side effects. Hence, in this study, a boric acid-substituted phthalocyanine photosensitizer (BAPc) was synthesized, exhibiting remarkable bacterial targeting capability.

View Article and Find Full Text PDF

Pathogen invasion and persistent inflammatory storms caused by bacterial infections are the main challenges to the healing of infected wounds. Herein, this study proposed a pH-responsive polysaccharide hydrogel dressing (CG-HA) composed of cationic guar gum (CG) and hyaluronic acid (HA). Additionally, Zn and ferulic acid (FA)/β-cyclodextrin (β-CD) inclusion complexes (FA/β-CD) were co-introduced into the CG-HA hydrogel to form the desired FA/β-CD@CG-HA-Zn hydrogel.

View Article and Find Full Text PDF

Deep cutaneous wounds, which are difficult to heal and specifically occur on dynamic body surfaces, remain a substantial healthcare challenge in clinical practice because of multiple underlying factors, including excessive reactive oxygen species, potential bacterial infection, and extensive degradation of the extracellular matrix (ECM) which further leads to the progressive deterioration of the wound microenvironment. Any available individual wound therapy, such as antibiotic-loaded cotton gauze, cannot address all these issues. Engineering an advanced multifunctional wound dressing is the current need to promote the overall healing process of such wounds.

View Article and Find Full Text PDF

Lutein-loaded multifunctional hydrogel dressing based on carboxymethyl chitosan for chronic wound healing.

Int J Biol Macromol

January 2025

National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Oxidative stress is a major contributor to the difficulties in chronic wound healing. Although antioxidant hydrogels have been developed, they are still insufficient for addressing the entire chronic wound healing process. In this study, a lutein-loaded multifunctional hydrogel dressing (Lutein/CMC/PVP/TA, Lutein/CPT) with synergistic antioxidation properties was developed by hydrogen bonding and electrostatic crosslinking of tannic acid (TA) with carboxymethyl chitosan (CMC) and polyvinylpyrrolidone (PVP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!