A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phage Infection Restores PQS Signaling and Enhances Growth of a Pseudomonas aeruginosa Quorum-Sensing Mutant. | LitMetric

Chemical communication between bacteria and between bacteria and the bacteriophage (phage) viruses that prey on them can shape the outcomes of phage-bacterial encounters. Quorum sensing (QS) is a bacterial cell-to-cell communication process that promotes collective undertaking of group behaviors. QS relies on the production, release, accumulation, and detection of signal molecules called autoinducers. Phages can exploit QS-mediated communication to manipulate their hosts and maximize their own survival. In the opportunistic pathogen Pseudomonas aeruginosa, the LasI/R QS system induces the RhlI/R QS system, and in opposing manners, these two systems control the QS system that relies on the autoinducer called PQS. A P. aeruginosa Δ mutant is impaired in PQS synthesis, leading to accumulation of the precursor molecule HHQ, and HHQ suppresses growth of the P. aeruginosa Δ strain. We show that, in response to a phage infection, the P. aeruginosa Δ mutant reactivates QS, which, in turn, restores expression, enabling conversion of HHQ into PQS. Moreover, downstream QS target genes encoding virulence factors are induced. Additionally, phage-infected P. aeruginosa Δ cells transiently exhibit superior growth compared to uninfected cells. Clinical isolates of P. aeruginosa frequently harbor mutations in particular QS genes. Here, we show that infection by select temperate phages restores QS, a cell-to-cell communication mechanism in a P. aeruginosa QS mutant. Restoration of QS increases expression of genes encoding virulence factors. Thus, phage infection of select P. aeruginosa strains may increase bacterial pathogenicity, underscoring the importance of characterizing phage-host interactions in the context of bacterial mutants that are relevant in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112912PMC
http://dx.doi.org/10.1128/jb.00557-21DOI Listing

Publication Analysis

Top Keywords

phage infection
12
aeruginosa mutant
12
aeruginosa
9
pseudomonas aeruginosa
8
cell-to-cell communication
8
genes encoding
8
encoding virulence
8
virulence factors
8
infection select
8
phage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!