The high mutation rate of COVID-19 and the prevalence of multiple variants strongly support the need for pharmacological options to complement vaccine strategies. One region that appears highly conserved among different genera of coronaviruses is the substrate-binding site of the main protease (M or 3CL), making it an attractive target for the development of broad-spectrum drugs for multiple coronaviruses. PF-07321332, developed by Pfizer, is the first orally administered inhibitor targeting the main protease of SARS-CoV-2, which also has shown potency against other coronaviruses. Here, we report three crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome (MERS)-CoV bound to the inhibitor PF-07321332. The structures reveal a ligand-binding site that is conserved among SARS-CoV-2, SARS-CoV, and MERS-CoV, providing insights into the mechanism of inhibition of viral replication. The long and narrow cavity in the cleft between domains I and II of the main protease harbors multiple inhibitor-binding sites, where PF-07321332 occupies subsites S1, S2, and S4 and appears more restricted than other inhibitors. A detailed analysis of these structures illuminated key structural determinants essential for inhibition and elucidated the binding mode of action of the main proteases from different coronaviruses. Given the importance of the main protease for the treatment of SARS-CoV-2 infection, insights derived from this study should accelerate the design of safer and more effective antivirals. The current pandemic of multiple variants has created an urgent need for effective inhibitors of SARS-CoV-2 to complement vaccine strategies. PF-07321332, developed by Pfizer, is the first orally administered coronavirus-specific main protease inhibitor approved by the FDA. We solved the crystal structures of the main protease of SARS-CoV-2, SARS-CoV, and MERS-CoV that bound to the PF-07321332, suggesting PF-07321332 is a broad-spectrum inhibitor for coronaviruses. Structures of the main protease inhibitor complexes present an opportunity to discover safer and more effective inhibitors for COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9044943 | PMC |
http://dx.doi.org/10.1128/jvi.02013-21 | DOI Listing |
JAMA Netw Open
January 2025
Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands.
Importance: Active surveillance (AS) for patients with prostate cancer (PC) often includes fixed repeat prostate biopsies that do not account for the varying risk of reclassification to significant disease. Given the invasive nature and potential complications of biopsies, a personalized approach is needed to balance the burden of biopsies with the risk of missing disease progression.
Objective: To develop and externally validate a dynamic model that predicts an individual's risk of PC reclassification during AS.
J Chem Inf Model
January 2025
Division of Preclinical Innovation, National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, Maryland 20850, United States.
The global impact of SARS-CoV-2 highlights the need for treatments beyond vaccination, given the limited availability of effective medications. While Pfizer introduced , an FDA-approved antiviral targeting the SARS-CoV-2 main protease (Mpro), this study focuses on designing new antivirals against another protease, papain-like protease (PLpro), which is crucial for viral replication and immune suppression. NCATS/NIH performed a high-throughput screen of ∼15,000 molecules from an internal molecular library, identifying initial hits with a 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Basic Medical Sciences, Faculty of Medicine, Istanbul Medipol University, Istanbul 34815, Türkiye.
The COVID-19 pandemic began in March 2020 and has affected many countries and infected over a million people. It has had a serious impact on people's physical and mental health, daily life and the global economy. Today, many drugs show limited efficacy in the treatment of COVID-19 and studies to develop effective drugs continue.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, Braunschweig 38124, Germany.
The main protease M is a clinically validated target to treat infections by the coronavirus SARS-CoV-2. Among the first reported M inhibitors was the peptidomimetic α-ketoamide , whose cocrystal structure with M paved the way for multiple lead-finding studies. We established structure-activity relationships for the series by modifying residues at the P1', P3, and P4 sites.
View Article and Find Full Text PDFDigit Discov
January 2025
School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
FEgrow is an open-source software package for building congeneric series of compounds in protein binding pockets. For a given ligand core and receptor structure, it employs hybrid machine learning/molecular mechanics potential energy functions to optimise the bioactive conformers of supplied linkers and functional groups. Here, we introduce significant new functionality to automate, parallelise and accelerate the building and scoring of compound suggestions, such that it can be used for automated design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!