The copper-catalyzed highly selective hydrosilylation of silyl or boryl alkene has been developed. This chemistry could afford a practical method for preparing chiral geminated disilyl and borylsilyl reagents, which are useful organosilanes and versatile synthons for organic synthesis. The experimental data suggested that this reaction could be compatible with a variety of functional groups. Furthermore, the utility of the gem-dimetal compounds, which could be prepared by this chemistry, has been well illustrated by further transformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.2c00858 | DOI Listing |
J Org Chem
January 2025
Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, People's Republic of China.
A novel copper-catalyzed formal diastereoselective [4 + 3] cycloaddition of 2-arylaziridines and 2-substituted cyclopentadiene was developed. This transformation provided an efficient protocol for the assembly of a highly strained bridged azabicyclo[3.2.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China.
Catalytic asymmetric transformation of donor-acceptor cyclopropanes (DACs) has been proven to be a highly valuable and robust strategy to construct diverse types of enantioenriched molecules. However, the use of 1,1,2,2-tetrasubstituted DACs to form products bearing quaternary stereocenters remains a long-term unsolved challenge. Here, we report the copper-catalyzed asymmetric aminative ring opening of tetrasubstituted alkynyl DACs that delivers a myriad of α-tertiary amines with high levels of enantioselectivities.
View Article and Find Full Text PDFJACS Au
November 2024
Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
(-)-Pleurotin () and (+)-dihydropleurotinic acid () are benzoquinone meroterpenoids isolated from fungal sources with powerful antitumor and antibiotic activities. Concise asymmetric total syntheses of the stereochemically pure (+)-dihydropleurotinic acid () and (-)-pleurotin () from the chiral pool ()-Roche ester-derived vinyl bromide have been achieved in 12 and 13 longest linear steps, respectively. The key transformations feature a Michael addition/alkylation cascade reaction to forge three contiguous stereocenters matched with the natural products, a PtO-catalyzed stereoselective reduction of olefin to generate the correct stereocenter at C3, a palladium-catalyzed Negishi cross-coupling between triflate and zinc reagent to introduce the redox-sensitive para-quinone moiety, and a hydroboration/copper-catalyzed carboxylation sequence to incorporate the vital carboxyl group.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2024
Center for Genomic Science Innovation, University of Wisconsin Madison, Madison, Wisconsin 53706, United States.
Protein footprinting is a useful method for studying protein higher order structure and conformational changes induced by interactions with various ligands via addition of covalent modifications onto the protein. Compared to other methods that provide single amino acid-level structural resolution, such as cryo-EM, X-ray diffraction, and NMR, mass spectrometry (MS)-based methods can be advantageous as they require lower protein amounts and purity. As with other MS-based proteomic methods, such as post-translational modification analysis, enrichment techniques have proven necessary for both optimal sensitivity and sequence coverage when analyzing highly complex proteomes.
View Article and Find Full Text PDFJ Am Chem Soc
November 2024
State Key Laboratory of Medical Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, P. R. China.
Compounds bearing both boryl and amino groups at distal positions are invaluable synthons for synthesizing pharmaceuticals, drug candidates, and natural products, but their catalytic enantioselective synthesis remains rarely explored. We report the first enantioselective 1,4-borylamination reaction through a copper-catalyzed cascade hydroborylation and hydroamination of arylidenecyclopropanes. This reaction combines four readily available components in a highly chemo-, site-, and enantioselective fashion (>20:1 r.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!