Amyloid-β (Aβ) pathology is one of the earliest detectable brain changes in Alzheimer's disease (AD) pathogenesis. The overall load and spatial distribution of brain Aβ can be determined in vivo using positron emission tomography (PET), for which three fluorine-18 labelled radiotracers have been approved for clinical use. In clinical practice, trained readers will categorise scans as either Aβ positive or negative, based on visual inspection. Diagnostic decisions are often based on these reads and patient selection for clinical trials is increasingly guided by amyloid status. However, tracer deposition in the grey matter as a function of amyloid load is an inherently continuous process, which is not sufficiently appreciated through binary cut-offs alone. State-of-the-art methods for amyloid PET quantification can generate tracer-independent measures of Aβ burden. Recent research has shown the ability of these quantitative measures to highlight pathological changes at the earliest stages of the AD continuum and generate more sensitive thresholds, as well as improving diagnostic confidence around established binary cut-offs. With the recent FDA approval of aducanumab and more candidate drugs on the horizon, early identification of amyloid burden using quantitative measures is critical for enrolling appropriate subjects to help establish the optimal window for therapeutic intervention and secondary prevention. In addition, quantitative amyloid measurements are used for treatment response monitoring in clinical trials. In clinical settings, large multi-centre studies have shown that amyloid PET results change both diagnosis and patient management and that quantification can accurately predict rates of cognitive decline. Whether these changes in management reflect an improvement in clinical outcomes is yet to be determined and further validation work is required to establish the utility of quantification for supporting treatment endpoint decisions. In this state-of-the-art review, several tools and measures available for amyloid PET quantification are summarised and discussed. Use of these methods is growing both clinically and in the research domain. Concurrently, there is a duty of care to the wider dementia community to increase visibility and understanding of these methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9308604 | PMC |
http://dx.doi.org/10.1007/s00259-022-05784-y | DOI Listing |
J Neurosurg
January 2025
4Department of Neurosurgery, Korea University Anam Hospital, Seoul, Republic of Korea.
Objective: Focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening is safe and potentially beneficial in patients with Alzheimer's disease (AD) for the removal of amyloid-beta (Aβ) plaques. However, the optimal BBB opening intervals and number of treatment sessions for clinical improvement remain undefined. Therefore, the aim of this study was to evaluate the safety and benefits of repeated and more extensive BBB opening alone.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.
Background: Plasma biomarkers demonstrated potential in identifying amyloid pathology in early Alzheimer's disease. Different subtypes of subjective cognitive decline (SCD) may lead to different cognitive impairment conversion risks.
Objective: To investigate the differences of plasma biomarkers in SCD subtypes individuals, which were unclear.
J Alzheimers Dis
January 2025
Department of Gerontology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background: Urinary formic acid (FA) has been reported to be a biomarker for Alzheimer's disease (AD). However, the association between FA and pathological changes in memory clinic patients is currently unclear.
Objective: This study aims to investigate associations between FA and pathological changes across different cognitive statuses in memory clinic patients.
J Neurosci
January 2025
German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany
The precuneus is a site of early amyloid-beta (Aβ) accumulation. Previous cross-sectional studies reported increased precuneus fMRI activity in older adults with mild cognitive deficits or elevated Aβ. However, longitudinal studies in early Alzheimer's disease (AD) are lacking and the relationship to the Apolipoprotein-E () genotype is unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
Background: Amyloid beta (Aβ) deposition marks an early stage in the progression of Alzheimer's disease (AD), detectable in‐vivo years before symptoms emerge and targeted by recently FDA‐approved drugs. This has propelled advancements in understanding, measuring, and treating AD, paving the way for disease prevention in those at risk. However, the psychological impact of disclosing Aβ status to cognitively unimpaired individuals remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!