Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Although full-length fibroblast growth factor 7 (FGF7) blocks cyclophosphamide-induced urothelial apoptosis in mice, limitations include high production costs because of its large size. We previously identified a small peptide derived from FGF2 that mitigated acute radiation syndrome as well as full-length FGF2. Based on the sequence of the FGF2 peptide, we synthesized a corresponding 19 amino acid FGF7 peptide (FGF7p). Our objectives were to determine if systemic FGF7p triggered the downstream targets and protected against cyclophosphamide bladder injury similar to full-length FGF7. We administered FGF7p or vehicle subcutaneously (SQ) to mice subjected to no injury or intraperitoneal (IP) cyclophosphamide and harvested bladders 1 day after injury. We then performed hematoxylin and eosin, TUNEL and immunofluorescence (IF) staining. In uninjured mice, a 20 mg/kg threshold FGF7p dose induced expression of phosphorylated (activated) FRS2α (pFRS2α), and pAKT in urothelium (consistent with cytoprotective effects of FGF7). We then gave FGF7p (20 mg/kg) or vehicle at 72 and 48 h prior to cyclophosphamide. One day after injury, TUNEL staining revealed many more apoptotic urothelial cells with vehicle treatment versus FGF7p treatment. IF for pAKT and readouts of two anti-apoptotic AKT targets (BAD and mTORC1) revealed minimal staining with vehicle treatment, but strong urothelial expression for all markers with FGF7p treatment. In conclusion, FGF7p appears to block bladder urothelial apoptosis via AKT and its targets, similar to FGF7. FGF7p is much more inexpensive to make and has a longer shelf life and higher purity than FGF7.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8988121 | PMC |
http://dx.doi.org/10.14814/phy2.15241 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!