Silk is a unique fiber, having a strength and toughness that exceeds other natural fibers. While inroads have been made in our understanding of silkworm silk structure and function, few studies have measured structure and function at nanoscales. As a consequence, the sources of variation in mechanical properties along single silk fibers remain unresolved at multiple scales. Here we utilized state of the art spectroscopic and microscopic methodologies to show that the silks of species of wild and domesticated silkworms vary in mechanical properties along a single fiber and, what is more, this variation correlates with nanoscale void formations. These results can also explain the strain hardening behaviours observed in the silks where structural features of the proteins could not. We thereupon devised a predictive thermal model and showed that the voids contribute to temperature regulation within the silkworm cocoons.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2tb00357kDOI Listing

Publication Analysis

Top Keywords

silkworm silk
8
structure function
8
mechanical properties
8
properties single
8
nanovoid formation
4
formation induces
4
induces property
4
property variation
4
variation individual
4
individual silkworm
4

Similar Publications

High-performance supercapacitors based on coarse nanofiber bundle and ordered network hydrogels.

Int J Biol Macromol

December 2024

Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.

Most of the developed flexible hydrogel supercapacitors struggle to maintain their electrochemical stability and structural integrity under tensile strain. Therefore, developing a flexible supercapacitor with excellent mechanical properties and stable electrochemical performance under different strains remains a challenge. Based on the previous cartilage-like structure, we designed a new coarse nanofiber bundle and ordered network.

View Article and Find Full Text PDF

Instant and refrigerated acid soaking are commonly used in cocoon production to prevent or break diapause, and provide developable silkworm eggs for sericulture, while their mechanisms have not been fully understood. This study aims to investigate the mechanisms by which hydrochloric acid (HCl) or dimethyl sulfoxide (DMSO) promotes embryonic development in silkworm Bombyx mori, focusing on the chloride ion (Cl) related gene expression profiles. Our results revealed that the HCl treatment of up to 6 min enhanced hatchability in freshly picked and cold-stored eggs, whereas a slight decrease in hatchability was observed in those treated with DMSO for 40 min.

View Article and Find Full Text PDF

Complete BmFib-L knockout reveals its indispensable role in silk fiber formation.

Int J Biol Macromol

December 2024

Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, Chongqing, China. Electronic address:

Silkworm (Bombyx mori), belonging to the order Lepidoptera, is an important model insect for economic and scientific research. The capacity of the silkworm to secrete robust silk renders it a valuable economic resource, while its biological characteristics offer insights into a number of scientific disciplines. Despite the extensive research conducted to elucidate the mechanisms of silk secretion, many aspects remain unclear.

View Article and Find Full Text PDF

With no effective treatments for functional recovery after injury, spinal cord injury (SCI) remains one of the unresolved healthcare challenges. Human induced pluripotent stem cell (hiPSC) transplantation is a versatile patient-specific regenerative approach for functional recovery after SCI. Injectable electroconductive hydrogel (ECH) can further enhance the cell transplantation efficacy through a minimally invasive manner as well as recapitulate the native bioelectrical microenvironment of neural tissue.

View Article and Find Full Text PDF

Bmpallidin, encoding a subunit of the BLOC-1 complex, is involved in urate granules formation in silkworm integument.

Int J Biol Macromol

December 2024

Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China. Electronic address:

The abnormal development of urate granules in silkworm larvae leads to translucent mutants with a distinct transparent phenotype. Studies on such mutants are expected to enhance current understanding of uric acid metabolism. The hoarfrost translucent (oh) mutant exhibits a mottled, translucent larval integument due to the presence of smaller and irregularly shaped urate granules compared to wild-type individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!