Silicon dioxide nanoparticles (nSiO) are extensively used in diverse fields and are inevitably released into the natural environment. Their overall aggregation behaviour in the environmental matrix can determine their fate and ecotoxicological effect on terrestrial and aquatic life. The current study systematically evaluates multiple parameters that can influence the stability of colloidal nSiO (47 nm) in the natural aquatic environment. At first, the influence of several hydrochemical parameters such as pH (5, 7, and 9), ionic strength (IS) (10, 50, and 100 mM), and humic acid (HA) (0.1, 1, and 10 mg L) was examined to understand the overall aggregation process of nSiO. Furthermore, the synergistic and antagonistic effects of ionic strength and humic acid on the transport of nSiO in the aqueous environment were examined. Our experimental findings indicate that pH, ionic strength, and humic acid all had a profound influence on the sedimentation process of nSiO. The experimental observations were corroborated by calculating the DLVO interaction energy profile, which was shown to be congruent with the transport patterns. The present study also highlights the influence of high and low shear forces on the sedimentation process of nSiO in the aqueous medium. The presence of shear force altered the collision efficiency and other interactive forces between the nanoparticles in the colloidal suspension. Under the experimental stirring conditions, a higher abundance of dispersed nSiO in the upper layer of the aqueous medium was noted. Additionally, the transport behaviour of nSiO was studied in a variety of natural water systems, including rivers, lakes, ground, and tap water. The study significantly contributes to our understanding of the different physical, chemical, and environmental aspects that can critically impact the sedimentation and spatial distribution of nSiO in static and dynamic aquatic ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d2em00016d | DOI Listing |
Sci Adv
January 2025
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA.
Enhancing transport and chemomechanical properties in cathode composites is crucial for the performance of solid-state batteries. Our study introduces the filler-aligned structured thick (FAST) electrode, which notably improves mechanical strength and ionic/electronic conductivity in solid composite cathodes. The FAST electrode incorporates vertically aligned nanoconducting carbon nanotubes within an ion-conducting polymer electrolyte, creating a low-tortuosity electron/ion transport path while strengthening the electrode's structure.
View Article and Find Full Text PDFACS Macro Lett
January 2025
Materials Department, University of California, Santa Barbara, California 93106, United States.
Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im) more efficiently solvates lithium salts and plasticizes the polymer.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemistry, University of Rajasthan, Jaipur, Rajasthan, India, 302004.
The present investigation delves into the redox reaction between -chlorophenol (-CP) and hexacyanoferrate(III) [HCF(III)], catalyzed by Ag(I) in an alkaline environment. Findings reveal a first-order dependence on both -CP and the oxidant, and the reaction rate showcased a first-order reaction towards Ag(I), which was further amplified by the medium as per the equation = + [OH]. Interestingly, the ionic strength remained unchanged throughout the reaction, exerting no discernible effect on the reaction rate.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Purpose: This study explored how exogenous silicon (Si) affects growth and salt resistance in maize.
Methods: The maize was cultivated in sand-filled pots, incorporating varied silicon and salt stress (NaCl) treatments. Silicon was applied at 0, 2, 4, 6, and 8 mM, and salt stress was induced using 0, 60 and120 mM concentrations.
Sci Rep
January 2025
Department of Fisheries, Faculty of Natural Resources, Isfahan University of Technology, Isfahan, 84156-8311, Iran.
The point of our study was to examine the interaction of ammonia-N poisoning and salinity on serum enzymes and oxidative stress factors of blood and liver in Nile tilapia (Oreochromis niloticus). The 50% lethal concentration (LC) in 96 h was 0.86 mg/L of ammonia-N.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!