Background: Low-grade duodenal inflammation has recently been identified in patients with functional dyspepsia (FD). Chemosensory tuft cells were reported to be associated with gastrointestinal diseases. We therefore assessed duodenal tuft cell density and microinflammation in patients with FD to determine whether these measures could serve as useful biomarkers, and also correlated tuft cell density and microinflammation in FD patients.
Methods: Duodenal biopsy specimens were obtained from patients with FD and from controls. Tuft cells, eosinophils, and mast cells were immunochemically stained with specific antibodies. Tuft cells were identified by immunostaining for doublecortin-like kinase 1 (DCLK1); cholinergic tuft cells were assessed by double staining for choline acetyltransferase (ChAT) and DCLK1. Immune-type tuft cells were assessed by IL-25 mRNA expression using real-time PCR.
Key Results: The density of intramucosal eosinophils and mast cells was significantly higher in the duodenum of FD patients than in controls. The density of tuft cells was significantly higher in the duodenum of FD patients compared with controls, and significantly correlated with eosinophil density in the duodenum of FD patients and controls. Moreover, a fraction of ChAT-positive cells was DCLK1 positive; all duodenal DCLK1+ tuft cells were ChAT-immunoreactive in FD and in control subjects.
Conclusions And Inferences: Cholinergic tuft cell density was higher in the duodenum of patients with FD and significantly correlated with eosinophil density. Further studies are needed to investigate the pathophysiological significance of tuft cells in FD and may provide valuable clues to the pathophysiology of FD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nmo.14378 | DOI Listing |
Elife
January 2025
Department of Neurobiology, Harvard Medical School, Boston, United States.
Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings.
View Article and Find Full Text PDFPoult Sci
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, 510642, China. Electronic address:
As sensors in the gut, tuft cells integrate a complex array of luminal signals to regulate the differentiation fate of intestinal stem cells (ISCs), which trigger a loop of tuft cell-ISC-goblet cell after parasitic infection. As a plant-derived alkaloid, Matrine plays a prominent role for standardizing ISC functions in Eimeria necatrix (EN)-exposed chicks. In this study, we investigated the modulation effects of Matrine on the specific intestinal epithelial cell loop in EN-exposed chicks in vivo and intestinal organoids (IOs) ex vivo.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany.
Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels.
View Article and Find Full Text PDFBiomedicines
December 2024
Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan.
Gut health is crucial in many ways, such as in improving human health in general and enhancing production in agricultural animals. To maximize the effect of a healthy gastrointestinal tract (GIT), an understanding of the regulation of intestinal functions is needed. Proper intestinal functions depend on the activity, composition, and behavior of intestinal epithelial cells (IECs).
View Article and Find Full Text PDFJ Pathol
February 2025
Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, PR China.
Intestinal stem cells (ISCs) and Paneth cells (PCs) reside at the bottom of the crypts of Lieberkühn in the small intestine. Recent studies have shown that the transcription factor Mist1, also named BHLHA15, plays an important role in the maturation of PCs. Since there is an intimate interaction between PCs and ISCs, we speculated that the loss of Mist1 could impact these two neighboring cell types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!