The emerging roles of the interaction between m6A modification and c-Myc in driving tumorigenesis and development.

J Cell Physiol

NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.

Published: July 2022

N6-methyladenosine (m6A) is an extremely common and conservative posttranscriptional modification, that can specifically target and regulate the expression or stability of a series of tumor-related genes, thus playing critical roles in the occurrence and development of tumors. c-Myc is an important tumorigenic transcription factor that promotes tumorigenesis and development by mainly regulating the expression of downstream target genes. Increasing evidence shows that m6A modification, as well as abnormal expression and regulation of c-Myc, is critical molecular mechanisms driving tumorigenesis and development. Although more evidence has been uncovered about the individual roles of m6A modification or c-Myc in tumors, the interaction between m6A modification and c-Myc in tumorigenesis and development has not been systematically summarized. Therefore, this review is focused on the mutual regulation between m6A modification and c-Myc expression and stability as well as its roles in tumorigenesis and development. We also summarized the potential value of the interaction between m6A modification and m6A expression and stability in tumor diagnosis and treatment, which provides a specific reference for revealing the mechanism of tumor occurrence and development as well as clinical diagnosis and treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.30733DOI Listing

Publication Analysis

Top Keywords

m6a modification
24
tumorigenesis development
20
modification c-myc
16
interaction m6a
12
expression stability
12
m6a
8
driving tumorigenesis
8
occurrence development
8
diagnosis treatment
8
modification
7

Similar Publications

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) is a severe condition with multifaceted causes, including inflammation and oxidative stress. This research investigates the influence of m6A (N6-methyladenosine) modification on GBP4, a protein pivotal for macrophage polarization, a critical immune response in ALI.

Methods: Utilizing a mouse model to induce ALI, the study analyzed GBP4 expression in alveolar macrophages.

View Article and Find Full Text PDF

YTHDF3-mediated FLCN/cPLA2 axis improves cardiac fibrosis via suppressing lysosomal function.

Acta Pharmacol Sin

January 2025

Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.

Cardiac fibrosis characterized by aberrant activation of cardiac fibroblasts impairs cardiac contractile and diastolic functions, inducing the progression of the disease towards its terminal phase, resulting in the onset of heart failure. Therefore, the inhibition of cardiac fibrosis has become a promising treatment for cardiac diseases. The ovarian follicle-stimulating hormone folliculin (FLCN) plays a significant role in various biological processes, such as lysosome function, mitochondrial synthesis, angiogenesis, ciliogenesis and autophagy.

View Article and Find Full Text PDF

Unlabelled: -methyladenosine (m A) is the most prevalent cellular mRNA modification and plays a critical role in regulating RNA stability, localization, and gene expression. m A modification plays a vital role in modulating the expression of viral and cellular genes during HIV-1 infection. HIV-1 infection increases cellular RNA m A levels in many cell types, which facilitates HIV-1 replication and infectivity in target cells.

View Article and Find Full Text PDF

RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (mA) and 5-methylcytosine (mC), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!