Glyphosate-based herbicide Roundup, as the most employed herbicide used for multiple purposes in agriculture, adversely affects nontarget organisms. We tested the effects of Roundup applied at larval and adult stages. Roundup caused developmental delay and increased larvae mortality. Roundup treatment reduced hemolymph glucose and glycogen levels in adult flies of both sexes at the highest concentration tested. Sex-dependent diverse effects were found in catalase and Cu,Zn superoxide dismutase (Cu,Zn-SOD) activities. Decreased aconitase activity, contents of thiols, and lipid peroxides were found after larval Roundup exposure. Furthermore, chronic exposure to adult flies decreased appetite, body weight, and shortened lifespan. Thus, our results suggest that high concentrations of Roundup are deleterious to both larvae and adults, resulting in a shift of the metabolism and antioxidant defense system in Drosophila melanogaster.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/arch.21893 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
Glyphosate (PMG) is a globally used broad-spectrum herbicide and receives environmental concerns because of its moderate persistence and potential carcinogenicity. Traditional PMG treatment methods often suffer from the generation of a more toxic and persistent aminomethylphosphonic acid (AMPA) intermediate. Herein, we develop a green method with ferrihydrite (FH) and CaO (FH/CaO) via regulating the coordination of PMG with FH and Ca, where the phosphonate group of PMG preferentially binds to FH and its carboxylate side complexes with Ca released by CaO, forming a FH-PMG-Ca ternary surface complex.
View Article and Find Full Text PDFBMJ Open
January 2025
National Poison Centre, Universiti Sains Malaysia, Georgetown, Penang, Malaysia
Objective: Glyphosate is widely used in Malaysian agriculture but poses a significant under-reported public health concern due to poisoning. This paper aims to study the epidemiology of glyphosate poisoning in Malaysia, assessing severity, identifying risk factors, and high-risk groups.
Setting: All glyphosate-related data of the Malaysia National Poison Centre from 2006 to 2023.
J Hazard Mater
January 2025
Department of Plant and Environmental Health, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA. Electronic address:
Glyphosate is a non-selective herbicide widely used in agriculture, and its overexposure poses significant health and environmental risks. Herein, a novel Cu-coordinated fluorescent sensing system (HYBC-Cu system) based on acylhydrazone groups was designed, capable of glyphosate-specific recognition. The HYBC-Cu system was constructed with simple steps, with the advantages of short recognition time (< 1 min), good specificity, anti-interference, and excellent sensitivity (LOD = 95 nM).
View Article and Find Full Text PDFMol Biol Rep
January 2025
Agricultural Research Center(ARC), Sugar Crops Research Institute(SCRI), Giza, Egypt.
Background: Glyphosate is an extensively employed herbicide in agriculture, specifically for sugarcane cultivation. The situation is different with the extensive physiological and genetic effects exerted by this herbicide on a range of plant species, including sugarcane, whose model basis is still poorly characterized, although its primary mode of action, which acts on the EPSPS enzyme in the shikimic acid pathway, is completely elucidated. The current study was aimed at investigating the stability of glyphosate formulation, molecular interactions of glyphosate formulation with rbcL enzyme associated with chlorophyll metabolism, and its effects on varieties of sugarcane.
View Article and Find Full Text PDFmSystems
January 2025
Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Gluconeogenesis, the reciprocal pathway of glycolysis, is an energy-consuming process that generates glycolytic intermediates from non-carbohydrate sources. In this study, we demonstrate that robust and efficient gluconeogenesis in bacteria relies on the allosteric inactivation of pyruvate kinase, the enzyme responsible for the irreversible final step of glycolysis. Using the model bacterium as an example, we discovered that pyruvate kinase activity is inhibited during gluconeogenesis via its extra C-terminal domain (ECTD), which is essential for autoinhibition and metabolic regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!