Dense data acquisition for 3-D high-resolution aquifer mapping through heliborne transient electromagnetic (HTEM) survey is continually not possible due to various technical and administrative constraints. Consequently, we apply ground geophysical surveys at possibly closer spacing to collect the sub-surface information in the no-fly area, which provides only a regional aquifer picture. In the area near Patna of Northern India, an extent of 18% was covered under the HTEM survey, and the rest was surveyed by ground geophysical methods. Both data are integrated using the theory of regionalized variables. The parameters of multi-aquifers i.e., top of the first aquifer, top of the separating clay layer, top and the bottom of second aquifer, are estimated together with their respective resistivities. The estimations are made at an interval of 250 m, practically an appropriate distance at which dense data generation was carried out using the HTEM survey. The integrated approach generates the data in the no-fly area with the same spatial density as the flown area. With this, we achieved the goal of completing the 3-D aquifer mapping of the entire area with dense data at high spatial resolution. This is a unique finding to manage the handicapped situation in this HTEM surveys, and an aide to overcome such constraints with cost-effectiveness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8986847 | PMC |
http://dx.doi.org/10.1038/s41598-022-08494-5 | DOI Listing |
J Hazard Mater
January 2025
School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China. Electronic address:
Groundwater is widely threatened by hazardous manganese and ammonia. In present study, a novel gravity-driven fixed-bed ceramic membrane filtration (GDFBCM) with critical PAC-MnOx-ceramsite filters was built to address these issues. Static ceramsite filters in GDCM significantly increased membrane flux from 11 L/m·h to 18 L/m·h on the 50th day of filtration.
View Article and Find Full Text PDFFront Antibiot
February 2024
School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
Antimicrobial resistance is a growing public health concern, increasingly recognized as a silent pandemic across the globe. Therefore, it is important to monitor all factors that could contribute to the emergence, maintenance and spread of antimicrobial resistance. Environmental antibiotic pollution is thought to be one of the contributing factors.
View Article and Find Full Text PDFEnviron Res
January 2025
Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an, 710075, China; Shaanxi Provincial Land Engineering Construction Group, Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an, 710075, China.
Surface greenness alters regional water storage by regulating hydrological processes, thereby modulating water constraints on ecosystem functions and feeding back sustainability. In semi-arid regions, excessive revegetation may exacerbate regional water resource depletion, intensify water limitations on ecosystems, and threaten long-term sustainability. However, these changes have not been adequately assessed.
View Article and Find Full Text PDFSci Total Environ
January 2025
Geological Survey of Denmark and Greenland (GEUS), Department of Hydrology, Copenhagen, Denmark.
Machine learning (ML) methods continue to gain traction in hydrological sciences for predicting variables at large scales. Yet, the spatial transferability of these ML methods remains a critical yet underexamined aspect. We present a metamodel approach to obtain large-scale estimates of drain fraction at 10 m spatial resolution, using a ML algorithm (Gradient Boost Decision Tree).
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Water Resource and Ecosystems, IHE Delft Institute for Water Education, Westvest 7, Delft, NH, Netherlands.
Groundwater is often used directly by the public in several river basins of India. Hence, this study was carried out with the objective of assessing the quality of groundwater in the Amaravathi basin, India, using a multiple indices approach. Groundwater quality data from 96 monitoring wells were obtained from the Central Groundwater Board and used in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!