A key feature of atherogenesis is the accumulation of diseased and dying cells within the lesional necrotic core. While the burden of intraplaque apoptotic cells may be driven in part by an increase in programmed cell death, mounting evidence suggests that their presence may primarily be dictated by a defect in programmed cell removal, or efferocytosis. In this brief review, we will summarize the evidence suggesting that inflammation-dependent changes within the plaque render target cells inedible and reduce the appetite of lesional phagocytes. We will present the genetic causation studies, which indicate these phenomena promote lesion expansion and plaque vulnerability, and the interventional data which suggest that these processes can be reversed. Particular emphasis is provided related to the antiphagocytic CD47 (cluster of differentiation 47) do not eat me axis, which has emerged as a novel antiatherosclerotic translational target that is predicted to provide benefit independent of traditional cardiovascular risk factors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9183217 | PMC |
http://dx.doi.org/10.1161/ATVBAHA.122.317049 | DOI Listing |
Sci Rep
December 2024
Department of Gastroenterology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
Immune checkpoint inhibitor (ICI) therapy is the new standard treatment for advanced or metastatic hepatocellular carcinoma (HCC); however, many patients still fail to respond. This study explored the expression and prognosis of programmed death ligand 1 (PD-L1), cluster of differentiation 24 (CD24), and cluster of differentiation 47 (CD47) in patients with hepatitis B virus-associated HCC (HBV-associated HCC). We analyzed sequencing data from the Cancer Genome Atlas (TCGA) and investigated the expression of PD-L1, CD24, and CD47 in HBV-associated HCC patients by immunohistochemistry and their relationship with prognosis and clinicopathological factors.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Laboratory of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
In this study, polypeptide TGGGPLGVARGKGGC-induced chiral manganese dioxide supraparticles (MnO SPs) are prepared for sensitive quantification of matrix metalloproteinase-9 (MMP-9) in vitro and in vivo. The results show that L-type manganese dioxide supraparticles (L-MnO SPs) exhibited twice the affinity for the cancer cell membrane receptor CD47 (cluster of differentiation, integrin-associated protein) than D-type manganese dioxide supraparticles (D-MnO SPs) to accumulate at the tumor site after surface modification of the internalizing arginine-glycine-aspartic acid (iRGD) ligand, specifically reacting with the MMP-9, disassembling into ultrasmall nanoparticles (NPs), and efficiently underwent renal clearance. Furthermore, L-MnO facilitates the quantification of MMP-9 in mouse tumor xenografts, as demonstrated by circular dichroism (CD) and magnetic resonance imaging (MRI) within 2 h.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA. Electronic address:
Background: Recent smooth muscle cell (SMC)-lineage tracing and single-cell RNA sequencing (scRNA-seq) experiments revealed a significant role of SMC-derived cells in atherosclerosis development. Further, thrombospondin-1 (TSP1), a matricellular protein, and activation of its receptor cluster of differentiation (CD) 47 have been linked with atherosclerosis. However, the role of vascular SMC TSP1-CD47 signaling in regulating VSMC phenotype and atherogenesis remains unknown.
View Article and Find Full Text PDFPeerJ
December 2024
Department of Pathology, Chongqing University Jiangjin Hospital, ChongQing, China.
Background: Cluster of differentiation 47 (CD47), a transmembrane protein, plays a critical role in regulating cellular functions and maintaining immune homeostasis. Its expression has been shown to influence cancer prognosis. In this study, we investigated the role of CD47 in tumor progression in colon adenocarcinoma (COAD) and evaluated its potential as a target for immunotherapy.
View Article and Find Full Text PDFMol Carcinog
December 2024
Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China.
As a promising therapeutic approach, immunotherapy is being extensively investigated in cervical cancer. Although immunotherapy has been validated to improve progression-free survival and overall survival in clinical trials, the overall response rate for cervical cancer remains inadequate, necessitating further improvement. Interleukin (IL)-37, an emerging immunomodulator, exhibits antitumour potentials by inhibiting tumour progression and regulating tumour-associated macrophage recognition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!