Understanding key overlap zones and habitats which are intensively shared by species in space and time is crucial as it provides vital information to inform spatial conservation with maximum benefits. The advent of high-resolution GPS technologies associated with new analytical algorithms is revolutionizing studies underpinning species spatial and social interaction patterns within ecosystems. Here, using a robust home range estimation algorithm, the autocorrelated kernel density estimator (AKDE) equipped with an equally powerful home range overlap metric, the Bhattacharyya's coefficient (BC), we provide one of the first attempts to estimate and delineate spatial home range overlap zones for critically endangered African white-backed vultures to inform conservation planning. Six vultures were captured in Hwange National Park using a modified cannon net system after which they were tagged and tracked with high-resolution GPS backpacks. Overall, results suggested weaker average home range overlaps based on both the pooled data (0.38 ± 0.26), wet non-breeding seasonal data (0.32 ± 0.23), and dry breeding season data (0.34 ± 0.28). Vultures 4, 5, and 6 consistently revealed higher home range overlaps across all the scales with values ranging between 0.60 and 0.99. Individual vultures showed consistence in space use patterns as suggested by high between-season home range overlaps, an indication that they may be largely resident within the Hwange ecosystem. Importantly, we also demonstrate that home range overlapping geographic zones are all concentrated within the protected area of Hwange National Park. Our study provides some of the first results on African vulture home range overlaps and segregation patterns in the savanna ecosystem based on unbiased telemetry data and rigorous analytical algorithms. Such knowledge may provide vital insights for prioritizing conservation efforts of key geographic overlap zones to derive maximum conservation benefits especially when targeting wide-ranging and critically endangered African white-backed vultures. To this end, spatial overlap zones estimated here, although based on a small sample size, could provide a strong foundation upon which other downstream social and ecological questions can be explored further to expand our understanding on shared space use mechanisms among African vulture species.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8976281PMC
http://dx.doi.org/10.1002/ece3.8778DOI Listing

Publication Analysis

Top Keywords

range overlaps
20
overlap zones
16
african white-backed
12
white-backed vultures
12
range
9
vultures spatial
8
spatial range
8
high-resolution gps
8
analytical algorithms
8
range overlap
8

Similar Publications

Study Objectives: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) may improve sleep dysfunction, a common non-motor symptom of Parkinson disease (PD). Improvement in motor symptoms correlates with DBS-suppressed local field potential (LFP) activity, particularly in the beta frequency (13 - 30 Hz). Although well-characterized in the short term, little is known about the innate progression of these oscillations across the sleep-wake cycle.

View Article and Find Full Text PDF

Interstitial Lung Disease Associated with Anti-Ku Antibodies: A Case Series of 19 Patients.

J Clin Med

January 2025

Department of Respiratory Medicine, National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, European Reference Network (ERN)-LUNG, 28 Avenue Doyen Lepine, 69677 Lyon, France.

Antibodies against Ku have been described in patients with various connective tissue diseases. The objective of this study was to describe the clinical, functional, and imaging characteristics of interstitial lung disease in patients with anti-Ku antibodies. : This single-center, retrospective observational study was conducted at a tertiary referral institution.

View Article and Find Full Text PDF

Recently, the application of deep neural networks to detect anomalies on medical images has been facing the appearance of noisy labels, including overlapping objects and similar classes. Therefore, this study aims to address this challenge by proposing a unique attention module that can assist deep neural networks in focusing on important object features in noisy medical image conditions. This module integrates global context modeling to create long-range dependencies and local interactions to enable channel attention ability by using 1D convolution that not only performs well with noisy labels but also consumes significantly less resources without any dimensionality reduction.

View Article and Find Full Text PDF

Wire-arc additive manufacturing (WAAM) has fully empowered the design and manufacturing of metals with its unparalleled efficiency and flexibility. However, the process has relatively poor shape control capabilities, often requiring machining post-processing. This study explores a tungsten inert gas arc remelting (TIGAR) process to improve the surface flatness of WAAM components at a low cost and significantly reduce machining waste (up to 76%), which is crucial for the sustainable development of the process.

View Article and Find Full Text PDF

Background: The profitability of the beef industry is directly influenced by the fertility rate and reproductive performance of both males and females, which can be improved through selective breeding. When performing genomic analyses, genetic markers located on the X chromosome have been commonly ignored despite the X chromosome being one of the largest chromosomes in the cattle genome. Therefore, the primary objectives of this study were to: (1) estimate variance components and genetic parameters for eighteen male and five female fertility and reproductive traits in Nellore cattle including X chromosome markers in the analyses; and (2) perform genome-wide association studies and functional genomic analyses to better understand the genetic background of male and female fertility and reproductive performance traits in Nellore cattle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!